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The Rise of the Machines: Automation,
Horizontal Innovation, and Income Inequality’

By DaviD HEMOUS AND MORTEN OLSEN

We build an endogenous growth model with automation (the replace-
ment of low-skill workers with machines) and horizontal innovation
(the creation of new products). Over time, the share of automation
innovations endogenously increases through an increase in low-skill
wages, leading to an increase in the skill premium and a decline in
the labor share. We calibrate the model to the US economy and show
that it quantitatively replicates the paths of the skill premium, the
labor share, and labor productivity. Our model offers a new perspec-
tive on recent trends in the income distribution by showing that they
can be explained endogenously. (JEL D31, E25,J24,J31, 033, 041)

n the past 50 years, the United States has seen dramatic changes in the income

distribution. The skill premium increased by 33 percent between 1963 and 2012,
and the labor share has declined by 7 percentage points ( p.p.) since the 1970s (pan-
els A and B of Figure 1). Meanwhile, several automation technologies (numerically
controlled machine tools, automatic conveyor systems, industrial robots...) have
been introduced, thereby increasing the range of tasks for which machines can sub-
stitute for labor. This is supported by patent data, which suggest that the share of
automation innovation has increased over time (panel C of Figure 1 plots the ratio
of automation to nonautomation patents in machinery in the United States according
to Dechezleprétre et al. 2019).

Our goal is to assess whether these trends can be explained endogenously as
reflecting the transitional dynamics of an economy. To do so, we build a model with
high- and low-skill workers that combines horizontal innovation (the creation of
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FIGURE 1. THE US SKILL PREMIUM, LABOR SHARE, AND AUTOMATION INNOVATIONS

Notes: Panel A is taken from Autor (2014). Panel B is from the BLS. Panel C reports the increase in the log ratio
of automation to nonautomation innovations in machinery in the United States according to Dechezleprétre et al.
(2019). See further details in Section III.

new products or tasks) and automation. Automation takes place in existing product
lines and enables the replacement of low-skill workers with machines. Therefore,
our model embodies a task framework where machines can substitute for work-
ers as Autor, Levy, and Murnane (2003), directed technical change as Acemoglu
(1998) since innovation endogenously occurs in two different technologies, and
capital-skill complementarity as Krusell et al. (2002)—henceforth, KORV. While
these papers rely on exogenous shocks (the advent of computers, an increase in the
skill supply prompting a change in the direction of innovation, and a drop in the
equipment price, respectively) to explain trends in the income distribution, we argue
instead that this can be the result of an endogenous increase in the share of automa-
tion innovations. Moreover, the interplay between automation and horizontal inno-
vation allows us to account for two puzzles in the literature: the stagnation of labor
productivity growth despite the rise in automation innovations and the deceleration
of the skill premium since the mid-1990s without an apparent decline in skill-biased
technical change (SBTC).

We develop our analysis in three steps. First, we present a version of the model in
which technical change is exogenous. Horizontal innovation increases both low-skill
and high-skill wages. Within a firm, automation increases the demand for high-skill
workers but reduces the demand for low-skill workers. At the aggregate level, auto-
mation has an ambiguous effect on low-skill wages, and, in line with recent trends,
it increases the skill premium and reduces the labor share.

Second, we endogenize innovation, which allows us to rationalize the observed
increase in the share of automation innovations. We show that in an economy
where low-skill wages are low, there is little automation. As low-skill wages
increase with horizontal innovation, the incentive to automate increases and with
it the share of automation innovation. As a result, the skill premium rises, the
labor share declines, and low-skill wages may temporarily decline. Finally, the
economy moves toward an asymptotic steady state where the share of automation
innovations stabilizes and low-skill wages grow, though slower than high-skill
wages and GDP.
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In a third step, to assess how far our “endogenous-transition” approach can go
quantitatively, we calibrate an extended version of our model to match the evolution
of the skill premium, the labor share, productivity, and the equipment-to-GDP ratio
from 1963 to 2012. Our model captures the trends in the data fairly well. In partic-
ular, labor productivity growth stagnates as horizontal innovation declines and the
skill premium decelerates in the 1990s and 2000s even though innovation is more
directed toward automation.! Moreover, conditional on our aggregate production
function, a model with exogenous technology would not capture trends better.

We model automation as high-skill-biased following a large literature showing
that computerization (Autor, Katz, and Krueger 1998; Autor, Levy, and Murnane
2003; and Bartel, Ichniowski, and Shaw 2007) or industrial robots (Acemoglu and
Restrepo 2017b and Graetz and Michaels 2018) decrease the relative demand for
low-skill labor.’

A large macro literature has argued that SBTC can explain the increase in the
skill premium since the 1970s. This literature can be divided into three strands. The
first emphasizes Nelson and Phelps’s (1966) hypothesis that skilled workers adapt
better to technological change (Lloyd-Ellis 1999; Caselli 1999; Galor and Moav
2000; Aghion, Howitt, and Violante 2002; Beaudry, Green, and Sand 2016). While
such theories explain transitory increases in inequality, our model features widening
inequality. Yet we borrow the idea of a shift in production technology spreading
through the economy.

A second strand emphasizes the role of capital-skill complementarity: KORV
find that the observed increase in the stock of capital equipment can account for
most of the variation in the skill premium. Our model also features capital-skill
complementarity but differs in several dimensions: it includes low-skill laborsaving
innovations; our quantitative exercise is more demanding because we endogenize
technology; and we match a decline in the labor share, whereas they have a small
increase.

A third branch assumes that technical change is either low- or high-skill labor
augmenting and measures the bias of technology (Katz and Murphy 1992, Goldin
and Katz 2008, and Katz and Margo 2014 ). The directed technical change literature
(Acemoglu 1998, 2002, 2007) then endogenizes this bias with the skill supply. Such
models have no role for labor-replacing technology and cannot generate changes in
the labor share (see Acemoglu and Autor 2011). None of these approaches try to
explain features of the income distribution through the transitional dynamics of an
economy.

Mntuitively, this comes from looking at automation as a stock: with a higher share of automated products, there
must be more automation innovation to compensate for its depreciation through horizontal innovation. As a result,
our model addresses the Card and DiNardo (2002) critique that the slowdown in the skill premium is inconsistent
with the SBTC hypothesis.

2 Autor, Katz, and Kearney (2006, 2008) and Autor and Dorn (2013) relate wage and job polarization to the
computer-driven automation of routine tasks often performed by middle-skill workers. We do not distinguish
between low- and middle-skill workers, as both have often performed tasks that have later on been automated (a
previous version of this paper, Hémous and Olsen 2016, did so). See also Feng and Graetz (2016).
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The idea that high wages might incentivize laborsaving technical change dates
back to Habakkuk (1962).7 In Zeira (1998), exogenous increases in TFP raise
wages and encourage the adoption of a capital-intensive technology, which further
raises wages (while automation can reduce wages in our model). Acemoglu (2010)
shows that labor scarcity induces laborsaving innovation. Neither paper analyzes
laborsaving innovation in a fully dynamic model nor focuses on income inequal-
ity. Peretto and Seater (2013) build a dynamic model of automation where wages
are constant. To get a more realistic path for wages, we introduce a second type of
innovation, namely the creation of new products or tasks. In work subsequent to
our paper, Acemoglu and Restrepo (2017a) also develop a growth model where
technical change involves automation and the creation of new tasks. While in our
model all tasks are symmetric (except for whether they are automated), in theirs,
new tasks are exogenously born with a higher labor productivity. As a result, their
model features a balanced growth path, and they focus on the self-correcting ele-
ments of the economy after a technological shock, while we focus on accounting for
secular trends. Subsequent papers combining automation and horizontal innoyations
include Rahman (2017), Martinez (2018), and Zeira and Nakamura (2018).”

Section I describes the baseline model with exogenous technology. Section II
endogenizes the path of technology and rationalizes the increase in the share of auto-
mation innovations. Section III calibrates an extended version of the model. Section IV
concludes. The main Appendix presents the proofs of the propositions and additional
exercises on the quantitative model. The online Appendix presents the proofs of addi-
tional results, various extensions, and details of the calibration exercise.

I. A Baseline Model with Exogenous Innovation

This section presents a model with exogenous technology to study the conse-
quences of automation and horizontal innovation on factor prices. Section IC derives
comparative statics results and relates them to the evolution of the US income dis-
tribution. Section ID analyzes the asymptotic behavior of wages for general paths
of technology.

A. Preferences and Production

We consider a continuous time infinite-horizon economy populated by H
high-skill and L low-skill workers. Both types of workers supply labor inelastically
and have identical preferences over a single final good of

1-6

o — Ck,T
U, = j; e ) Ay,

3 A few recent papers provide empirical evidence for the role of wages on technology adoption: Lewis (2011);
Hornbeck and Naidu (2014); Manuelli and Seshadri (2014); Clemens, Acemoglu, and Restrepo (2018b); Lewis and
Postel (2018); and Dechezleprétre et al. (2019).

“Benzell et al. (2019), following Sachs and Kotlikoff (2012), build a model where a code-capital stock can
substitute for labor and show that a technological shock that favors the accumulation of code-capital can lead to
lower long-run GDP.
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where p is the discount rate, § > 1 is the inverse elasticity of intertemporal substi-
tution, and Cy, is consumption of the final good at time ¢ by group k € {H,L}. The
final good is produced by a competitive industry combining a set of intermediate
products, i € [0,N], using a CES aggregator:

N, NI . ﬁ
Y,z(fo e (7) 01dl> ,

where y,(i) is the use of intermediate product i at time t and o > 1 is the elasticity
of substitution between these products. As in Romer (1990), an increase in N, rep-
resents a source of technological progress.

We normalize the price of Y, to one at all points in time and drop time subscripts
when there is no ambiguity. The demand for each product i is

(1) y(i) = p(i)°Y,

where p(i) is the price of product i and the normalization implies that the ideal price
index, [[Vp (i)'~ di]"/'~7), equals one.

Each product is produced by a monopolist who owns the perpetual rights of pro-
duction. Production occurs by combining low-skill labor, {(i), high-skill labor, &(i),
and, possibly, type-i machines, x(i), according to

@ ) = 1™+ ) ex) 7] iy

where (i) € {0,1} is an indicator function for whether or not the monopolist has
access to an automation technology, which allows for the use of machines.? If the
product is not automated («(i) = 0), production takes place using a Cobb-Douglas
production function with only low-skill and high-skill labor and a low-skill factor
share of 3. If it is automated («(i) = 1), machines can be used in the production
process as a substitute for low-skill labor with an elasticity ¢ > 1. The parameter
@ is the relative productivity advantage of machines over low-skill workers, and G
denotes the share of automated products. Therefore, automation takes the form of a
secondary innovation in existing product lines."

Since each product is produced by a single firm, we identify each product with
its firm and refer to a firm that uses an automated production process as an auto-
mated firm. We refer to the specific labor inputs provided by high-skill and low-skill
workers in the production of different products as “different tasks” performed by
these workers so that each product comes with its own tasks. It is because /(i) is not
fixed, but can change over time, that our model captures the notion that machines
can replace workers in new tasks. A model with a fixed a(i) for each product would

e—1
€

5We allow for perfect substitutability (e = oc) in which case y(i) = [I(i) 4+ a(i)@x())]?h (i)' 7.
6Secondary innovations in a growth model were introduced by Aghion and Howitt (1996), who study the inter-
play between applied and fundamental research.
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only allow for machines to be used more intensively in production but always for
the same tasks.

Although we will refer to x as “machines,” our interpretation also includes
any form of computer inputs, algorithms, the services of cloud-providers, etc. In
Section III, we will identify machines with equipment (excluding transport) and
software. In turn, automation innovations refer to innovations that allow machines
to accomplish tasks with less need for a human operator. This includes robotics
but also computer numerical control machine tools, automatic conveyor belts,
computer-aided design, etc./’

For now, machines are an intermediate input—this assumption is innocuous, and
in Section III machines are a capital input without changing our results qualitatively.
Once invented, machines of type i are produced competitively one-for-one with the
final good, such that the price of an existing machine is always equal to one and
technological progress in machine production follows that in the rest of the econ-
omy. Yet our model can capture the notion of a decline in the real cost of equipment,
as automation for firm i can equivalently be interpreted as a decline of the price of
machine i from infinity to one.

B. Equilibrium Wages

In this section, we derive how wages are determined in equilibrium, taking
as given the number of products N, the share of automated products G, and the
employment of high-skill workers in production H* = [Nh(i)di (we let H® < H
to accommodate later sections where high-skill labor is used to innovate).

From equation (2), the unit cost of product i is given by

B

() elwewma()) = 871 =8I Wi+ pa(i)) Tw

where ¢ = ¢, w; denotes low-skill wages, and wy high-skill wages. For all w;, wy
> 0, automation reduces costs (c(wp,wy,1) < c(wg,wy,0)). Price is set as a
markup over costs: p(i) = o/(c — 1) - ¢(wy, wy, a(i)). Using Shepard’s lemma and
equations (1) and (3) delivers the demand for low-skill labor of a single firm:

whwg, (i) = Wit o—1 Uc wr, Wy, (i 7y,
(4) l( L ()) ﬁWi_E‘i'gOOé(i)( g ) ( ()) Y

The effect of automation on demand for low-skill labor in a firm is generally
ambiguous. This is due to the combination of a negative substitution effect (auto-
mation allows for substitution between machines and low-skill workers) and a
positive scale effect (automation decreases costs, lowers prices, and increases
production). As we focus on laborsaving innovation, we impose the condition
e > 1+ (o — 1) throughout the paper, which is necessary and sufficient for

7We include IT innovations in our interpretation because our model does not distinguish between low-skill and
middle-skill workers.
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the substitution effect to dominate at the firm level and ensures [(wg,wpy,1)
< l(wg,wg,0) for all wy,wy > 0.

At the aggregate level, since both automated firms and nonautomated firms are
symmetric, output can written as

o—1
(5) Y = NoTx (1- G)(];((LNA)J(HP,NA)l/ﬁ)
T,
5 0;1 o1

R M LA N A

T,

e—1
€

vl )

where L* (respectively L™) is the total mass of low-skill workers in automated
(respectively nonautomated) firms, H™ (respectively H™) is the total mass of
high-skill workers hired in production in automated (respectively nonautomated)
firms,and X = [Nx(i) di is total use of machines. The first term 7} captures the clas-
sic case where production takes place with constant shares between factors (low-skill
and high-skill labor). The second term 7, represents the factors used within auto-
mated products and features substitutability between low-skill labor and machines.
Note, G is the share parameter of the “automated” products nest, and therefore an
increase in G is T»-biased (as o > 1). Finally, N'/(°=1 is a TFP parameter.

With CRS and perfect competition in final good production, the price of the final
good is equal to its cost. Using that all intermediate producers charge the same
markup o /(o — 1) and that final good output obeys equation (5), the price normal-
ization gives

Nﬁ —e\" B(l—o ﬁ _
(6) Uilﬁﬁu_ﬂ)l—ﬁ(G((p_"Wi ) +(1_(;)“’L( )) W}-IB: L

where we define 4 = (0 — 1)/(e — 1) < 1 (by our assumption on ¢). This rela-
tionship defines the unit isocost curve in the (wy, wy) space in It shows the
positive relationship between real wages and the level of technology given by N, the
number of products, and G, the share of automated firms.

Applying Shepard’s lemma to the cost function defined by the left-hand side of
(6), we get the relative labor shares in production:

wo HP 1-8 G—|—(1—G) (1+c,0w6[1)w
(7) = = -
B G +ews™) "+ (1=G)(1+ewi™)

WLL

8 For automated firms, this model features an elasticity of substitution between high-skill labor and machines
equal to that between high-skill and low-skill labor. This, however, does not hold at the aggregate level, consistent
with KORYV, who argue that the aggregate elasticity of substitution between high-skill and low-skill labor is greater
than that between high-skill labor and machines.

When ¢ = oo, the skill premium is given by %’ = ## if w, < @' such that no firm uses machines,
and ¥ 101 G+(1=G)(pwy) " b
b BoH (1= G)(@wy) Y

itw, > @ .
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FIGURE 2. RELATIVE DEMAND CURVE AND IsOcOST CURVE FOR DIFFERENT VALUES OF N AND G

This expression gives the relative demand curve for high-skill and low-skill labor
drawn in Figure 2. Together (6) and (7) determine real wages uniquely as a function
of N,G, and H”. For G = 0, the relative demand curve is a straight line, with slope
(1 — B)L/(BH"), reflecting the constant factor shares in a Cobb-Douglas economy.
For G > 0, the right-hand side of (7) increases in wy, so that the relative demand
curve is nonhomothetic and bends counterclockwise as w; grows. Therefore, as long
as G tends toward a positive constant, low-skill and high-skill wages cannot grow at
the same rate in the long run.

Intuitively, higher low-skill wages increase the ratio of high-skill to low-skill
labor share in production for two reasons. First, they induce more substi-
tution toward machines in automated firms as their use relative to low-skill
labor obeys x/I = pw§, reflected by the term (1 4+ @wi ')~ in (7)—recall
that ¢ > 1. Second, higher low-skill wages improve the cost advantage of auto-
mated firms and their market share. Using (1) and (3), the relative revenues (and
profits) of nonautomated and automated firms are

1
(8) R(wr,wi0) /R(wrwi 1) = m(wpwy,0) /m(wrwi 1) = (14+owi!)

which decreases in w;, (reflected by the term (1 + pw{i ') #in (7)).

The static equilibrium is closed by the final good market clearing condi-
tion Y = C+ X, where C = C; + Cy is total consumption. Note, GDP includes
the payment to labor and aggregate profits, which are a share 1/0 of output.
Therefore, GDP and the total labor share LS are given by

I
l—i-(a—l)(l—ﬁ)(WLL + ”)’

WHHP

(9) GDP = Ly +w,L+wyH, LS =1-
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where the second equality uses that payment to high-skill labor in production is a
constant share (1 — 8)(¢ — 1) /o of output.

C. Technical Change and Wages

We analyze the consequences of technical change on the level of wages using
Figure 2. An increase in the number of products, N, pushes out the isocost curve
and increases both low-skill and high-skill wages. When G = 0, both wages grow
at the same rate since the relative demand curve is a straight line, but for G > 0,
the demand curve is nonhomothetic and the skill premium grows. Therefore, an
increase in N at constant G (> 0) is high-skill biased.

An increase in the share of automated products G has a positive effect on high-skill
wages and the skill premium but an ambiguous effect on low-skill wages: Higher
automation increases the productive capability of the economy and pushes out the
isocost curve (an aggregate scale effect), which increases low-skill wages. Yet it
also allows for easier substitution away from low-skill labor, which pivots the rela-
tive demand curve counterclockwise (an aggregate substitution effect), decreasing
low-skill wages. Therefore, automation is always high-skill labor biased (wy/w;
increases), but it is low-skill laborsaving (w; decreases) if and only if the aggregate
substitution effect dominates the aggregate scale effect. Formally, one can show the
following result holds (proof in Appendix A1).!

PROPOSITION 1: Consider the equilibrium (wy,wy) determined by equations (6)
and (7). Assume that ¢ < oo. It holds that

(A) An increase in the number of products N (keeping G and H" constant) leads
to an increase in both high-skill (wy) and low-skill wages (wy). Provided
that G > 0, an increase in N also increases the skill premium wy/w; and
decreases the labor share.

(B) An increase in the share of automated products G (keeping N and H" con-
stant) increases the high-skill wages wy, the skill premium wy/w;, and
decreases the labor share. Its impact on low-skill wages is generally ambigu-
ous, but low-skill wages are decreasing in G if (i) 1 < (o — 1)(1 — ) orif
(ii) N and G are high enough.

(C) An increase in the number of nonautomated products (an increase in N keep-
ing GN constant) increases both high-skill (wy) and low-skill wages (wy). If
N is large enough or € < o, it decreases the skill premium.

101n the perfect substitute case, ¢ = oo, wy increases in N and weakly increases in G, wy;/w; weakly increases
in N and G, and w; weakly increases in N and weakly decreases in G provided that 1 /(1 — 3) < o — 1 or G is
large enough. When € = oo and G = 1, the isocost curve has a horizontal arm and the relative demand curve a
vertical one.
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Part B gives sufficient conditions under which automation is low-skill laborsav-
ing. The aggregate substitution effect is larger than the scale effect in two cases:
(i) The elasticity of substitution o is large, as newly automated products gain a larger
market share; or the cost share of the low-skill labor-machines aggregate (3 is small
as the cost-saving effect of automation is small. (ii) G and N are large: in that case,
additional automation hurts low-skill workers more, as there are few nonautomated
firms, while most of the aggregate productivity gains are already realized. It is worth
comparing the effect of automation with that of an increase in machines’ productiv-
ity ¢ (equivalent to a decline in the price of machine). The latter also has an ambigu-
ous effect on low-skill wages resulting from the combination of a substitution effect
and a scale effect, but it is less likely to be low-skill laborsaving than automation.'"

Part C considers an increase in the number of nonautomated products, which cor-
responds to the “horizontal innovation” to be introduced in Section II. Such techno-
logical change pushes out the isocost curve (N increases) but also makes the relative
demand curve rotate clockwise (GN stays constant). This increases demand for both
types of workers and therefore both wages. Horizontal innovation is low-skill labor
biased (it reduces the skill premium) if N is large, in which case w; is large so that
the isocost curve does not move much with horizontal innovation, or if machines
and low-skill workers are not too substitute (¢ < o is a sufficient condition)./'2

Proposition 1 offers important insights into the types of technological change that
can simultaneously account for a rising skill premium (panel A of Figure 1) and a
decreasing labor share (panel B of Figure 1). Specifically, these trends are consistent
with an economy with a growing number of products and a constant or rising share
of automated products.'? Moreover, it suggests that an increase in automation may
also give rise to a decrease in wages for low-skill workers. Section II will model
innovation and explain why we should expect a rising number of products and a
rising share of automated products until it approaches an asymptotic steady-state
value.

D. Asymptotics for General Technological Processes

We study the asymptotic behavior of the model for given paths of technol-
ogies and mass of high-skill workers in production. For any variable g, (such
as N,), we let gf = d,/a, denote its growth rate and g% = lim,_, g¥ if it exists.
We focus here on the case where the share of automated products admits an interior
limit G, € (0,1) for which we obtain the following result (proof in Appendix A2;
online Appendix B2.1 studies the cases where G, = Oor 1).

" Formally, we show that dw/dp < 0implies that Ow/dG < 0 but the reverse is not true—see Appendix Al.
Intuitively, this is the case because an increase in automation not only acts as “factor augmenting technical change”
for the inputs within automated firms but also as “factor-depleting technical change” for the inputs in nonautomated
firms. This point can be seen from equation (5) and is made by Aghion, Jones, and Jones (2019).

121n the perfect substitute case, an increase in the number of nonautomated products increases wy, and weakly
increases wy. If G < 1 and N is large enough, it decreases the skill premium.

13The decreasing relationship between the labor share and the skill premium obtained when machines are an
intermediate input generalizes to the case where machines are part of a capital stock with a perfectly elastic supply
(see Section IIT and online Appendix B10).
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PROPOSITION 2: Consider three processes [N]Xo, (G0, and [HY ], where
(N,,G,HF) € (0,00) x [0,1] x (0,H] for all t. Assume that G,, gV, and H' all
admit limits G, g%, and H, with G, € (0,1), g > 0,and HY, > 0. Then, the
asymptotic growth of high-skill wages wy, and output Y, are

(10) gh =gl = g%/ ((1 = B)(c— 1)),

and the asymptotic growth rate of wy, is given by

(11) "= ggo/(l%—ﬁ(a—l)).

This  proposition  first  relates the  growth rates of  out-
put and high-skill wages to the growth rate of the number of prod-
ucts. Note: Y, is proportional to Ntl/((lf‘ﬁ)(gfl)) in the long run.
This reflects the standard expanding-variety model gains and, in the presence of
automation (G,, > 0), a multiplier effect, which increases in the asymptotic share
of machines (3, as machines are a reproducible input.

Second, when there is a positive share of nonautomated products asymptoti-
cally, G, < 1, low-skill workers and machines are imperfect substitutes-in the
aggregate (even if there are perfect substitutes at the firm level ¢ = 00).!'1 As a
result, low-skill wages must grow at a positive rate asymptotically when the number
of products grows. Intuitively, a growing stock of machines and a fixed supply of
low-skill labor imply that the relative price of a worker (w;,) to a machine (p;) must
grow at a positive rate. Since machines are produced with the same technology as
the consumption good, p; equals one and the real wage w;, must grow at a positive
rate.

Third, the proposition shows that if G, > 0, low-skill wages cannot grow at the
same rate as output. This result follows from Uzawa’s theorem: equation (5) shows
that an increase in the number of product &, is not labor augmenting unless G, = 0.
We get G, > 0 as long as the automation intensity is bounded away from zero (see
online Appendix B2.2). Further, when G, < 1, the demand for low-skill labor
increasingly comes from the nonautomated firms (as automation is laborsaving at
the firm level), while most of the demand for high-skill labor comes from auto-
mated firms. With growing wages, the relative market share of nonautomated firms
decreases in proportion to (1 4+ @w§, 1) ™" ~ ¢~ * w[tﬂ (=D, Then, the growth rate
of low-skill wages is a fraction of the growth rate of high-skill wages given by
(11). The ratio between the growth rates of high- and low-skill wages increases
with a higher importance of low-skill workers (a higher /3) or a higher substitutabil-
ity between automated and nonautomated products (a higher o) since both imply
a faster loss of competitiveness of the nonautomated firms. Yet it is independent
of the elasticity of substitution between machines and low-skill workers, ¢, or of

14 As long as new nonautomated products are continuously introduced, and the intensity at which nonautomated
firms are automated is bounded, the share of nonautomated products is always positive; i.e., G,, < 1 (see proof in
online Appendix B2.2). This ensures that there is no economy-wide perfect substitution between low-skill workers
and machines.
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the exact asymptotic share of automated products G.. In this case, nonautomated
products provide employment opportunities for low-skill workers, which limits the
relative losses of low-skill workers compared to high-skill workers (their wages
grow according to (11) instead of (B5) and ¢ > 1+ (o — 1)). In the model of
Section II, the economy endogenously ends up in this case.

Proposition 2 establishes general conditions under which low-skill wages grow
asymptotically but slower than high-skill wages. We briefly discuss the robustness
of this result. First, one might be concerned that the slower growth in low-skill
wages is an artifact of having exogenous supplies of low- and high-skill labor.
Online Appendix B3 extends our model to allow for endogenous skill choice.
Specifically, we consider a Roy model in which workers have heterogeneous com-
parative advantage between being low- and high-skill. Low-skill wages still grow
slower than high-skill wages asymptotically, and now the share of low-skill workers
tends toward zero. Second, the result that imperfect aggregate substitution between
machines and low-skill workers leads to positive growth in low-skill wages asymp-
totically relies on machines and the consumption good sharing the same production
technology. Online Appendix B4 relaxes this assumption and allows for negative
growth in p7. In that case, low-skill wages may but need not decline asymptotically.

II. Endogenous Innovation

We now model automation and horizontal innovation as the result of investment.
In Sections ITA-TIC, we analyze the effect of wages on innovation (the reverse of
Proposition 1), study the transitional dynamics of the system, and explain why the
economy should experience an increase in the share of automated products as it
develops. Section IID explores the interactions between the two innovation pro-
cesses. Online Appendix B6 provides numerical examples to illustrate this sec-
tion and shows comparative statics results.

A. Modeling Innovation

If a nonautomated firm hires A7(i) high-skill workers to perform automation
research, it becomes automated at a Poisson rate 7 G (N,h(i))". Once a firm is
automated, it remains so forever. The parameter > 0 denotes the productivity of
the automation technology; x € (0, 1) measures its concavity; Gf, & € [0, ], rep-
resents possible knowledge spillovers from the share of automated products; and N,
represents knowledge spillovers from the total number of products. The spillovers
in N, ensure that both automation and horizontal innovation may take place in the long
run; they exactly compensate for the mechanical reduction in the amount of resources
for automation available for each product (namely high-skill workers) when the
number of product increases.'> The presence of spillovers in automation technology

!5 These spillovers can be micro-founded as follows: let there be a fixed mass one of ﬁrms indexed by j each
producing a continuum N, of products indexed by i so that production is given by ¥, = f f N M2 ) dld])rr T
When a firm hires A7(j) high-skill workers in automation, each of its nonautomated products gets independently
automated with a Poisson rate of n G [H2(j) /(1 — G,(j))]". The aggregate economy would be identical to ours and
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(& > 0) implies a delayed and faster rise in the share of automated products.'® We
assume that & < 1 — k(1 — (3), which ensures that automation always takes off
(see Proposition 3).

New products are developed by high-skill workers in a standard manner accord-
ing to a linear technology with productivity vN,. With H? high-skill workers pursu-
ing horizontal innovation, the mass of products evolves according to

N, = vN,HP.

We assume that firms do not exist before their product is created and therefore can-
not invest in automation. As a result, new products are born nonautomated, which
means that “horizontal innovation” corresponds to an increase in N, keeping G, N,
constant and is low-skill biased under certain conditions (see Proposition 1). This
is motivated by the idea that when a task is new and unfamiliar, solving unforeseen
problems requires the flexibility and outside experience of human workers. Only as
the task becomes routine and potentially codefiable, a machine (or an algorithm) can
perform it (Autor 2013).

As nonautomated firms get automated at Poisson rate 7Gf (N,hi')", and new
firms are born nonautomated, the share of automated firms obeys

(12) G, = nG; (Nh') (1 —-G,) — Ggl.

Therefore, the level of automation in the economy, G,, can be understood as a
“stock” that depreciates through the introduction of new products. As a result, for a
given growth rate in the number of products (gV), a higher automation intensity per
product (nGf (N,h{)"(1 — G,)) is required to increase the share of automated prod-
ucts when this share G, is already high. This feature plays a role in explaining why
the growth rate of the skill premium need not grow the fastest when innovation is the
most directed toward automation. It is also one of the main differences between our
modeling of automation and a simple reduction in the price of equipment.

Overall, the rate and direction of innovation depends on the equilibrium alloca-
tion of high-skill workers between production, automation, and horizontal inno-
vation."” We define the total mass of high-skill workers working in automation
as H' = |Mh{(i)di.'S High-skill labor market clearing then leads to

(13) HY +HP + HY = H.

have the same social planner allocation (the decentralized equilibrium would behave similarly, but the externality
in the automation technology from the number of products would be internalized).

16Whenever & > 0, we assume that G, > 0. Growth models with more than one type of technology often
feature similar knowledge spillovers (e.g., Acemoglu 2002). Bloom, Schankerman, and Van Reenen (2013) show
empirically that technologies that are closer to each other in the technology space have larger knowledge spillovers.

7We focus here on the decentralized equilibrium, but online Appendix B8 studies the social planner’s problem.
The optimal allocation is qualitatively similar so that our results are not driven by the market structure we impose.

8Using that by symmetry the total amount of high-skill workers hired in automation research is
HY = (1 — G,)N,h?, we can rewrite (12) as G, = nGX(H)*(1 — G)'™" — G, gV.
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B. Innovation Allocation

We denote by V4 the value of an automated firm, by 7, the economy-wide interest
rate, and by 7/ = m(Wp W 1) the profits at time 7 of an automated firm. The asset
pricing equation for an automated firm is given by

(14) VA = ot 4 Vf.

This equation states that the required return on holding an automated firm, V4, must
equal the instantaneous profits plus appreciation. An automated firm only maxi-
mizes instantaneous profits and has no intertemporal investment decisions to make.

A nonautomated firm invests in automation. Denoting by V¥ the value of a
nonautomated firm and letting 7 = 7(w;,, wy,,0), we get the asset pricing equation

- K .
(15) r VY = 7+ nGE(NRL) (V= VY) — wyh + VY,

where 47 is the mass of high-skill workers in automation research hired by a single
nonautomated firm. This equation is similar to equation (14), but profits are aug-
mented by the instantaneous expected gain from innovation G~ (N,h) (V2 — V)
net of expenditure on automation research, wy;, 12", This gives the first-order condition

(16) knGENE (12" (VA= V) = wy,

Note, i increases with the difference in value between automated and nonautomated
firms and thereby current and future low-skill wages—all else equal.'”

Free entry in horizontal innovation ensures that the value of creating a new firm
equals its opportunity cost when there is strictly positive horizontal innovation

(N, > 0):
(17) YN VY = wy,.

The low-skill and high-skill representative households’ problems are standard
and lead to Euler equations that in combination give~"

(18) C/C = (ri—p)/9,

19The model predicts that the ratio of high-skill to low-skill labor in production is higher for automated than
nonautomated firms, though not overall since nonautomated firms also hire high-skill workers for the purpose of
automating. In particular, new firms do not always have a higher ratio of low- to high-skill workers (and at the time
of its birth, a new firm only relies on high-skill workers).

29Consumption growth is the same for both households even though low-skill wages grow at a lower rate than
high-skill wages in the long run. This is possible because low-skill workers save initially, anticipating a drop in
labor income.
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with a transversality condition requiring that the present value of all time-7 assets in
the economy (the aggregate value of all firms) is asymptotically zero:

limt_,oo<exp<_f0trsds>N,((l -GV + G,V?)) — 0.

C. Description of the Dynamic Equilibrium

Appendix A3 shows that the equilibrium can be characterized by a system of four
differential equations with two state variables (determining N, and G,), two control
variables (which give the allocation of high-skill workers in innovation and produc-
tion), and an auxiliary equation defining low-skill wages. It further establishes the
following result.

PROPOSITION 3: Assume that & " (Y(1 — k) /p)" ' p/n+ p/v < H. Then:

(A) The system of differential equations admits an asymptotic steady state with
a constant share of automated products G, € (0,1) and positive growth in
the number of products g%, > 0. The growth rates of output and wages are
given by Proposition 2 as (10) and (11).

(B) Foranya > 0,and anyt < oo, there exists an N, sufficiently low such that
during the interval (0,1), the automation rate nG: (h*)"* < a, and the econ-
omy behaves arbitrarily close to that of a Romer model where automation is
impossible.

(C) If g admits a positive limit and G, admits a limit, then the economy con-
verges to an asymptotic steady state with G, € (0,1) as described in (A).

Proposition 3 establishes three results. First, under the appropriate parameter
conditions, there exists an asymptotic steady state where the share of automated
products G, is between zero and one.?!{?2 Second, for N, sufficiently low, the econ-
omy behaves close to a Romer model with no automation. Third, if G, admits a limit
and gV a positive limit, the economy must converge toward the asymptotic steady
state regardless of the initial values (N, G). Therefore, the economy must feature
a period where the rate of automation innovation increases: it is low for low N, but
must be positive later on to ensure a positive share of automated products in the

21To understand the condition k™" (y(1 — &)/p)" "' p/n+ p/v < H, let the efficiency of the automation
technology 7 be arbitrarily large such that the model approaches a Romer model with only automated firms. Then
this inequality becomes p/vy < tH, which is the condition for positive growth in a Romer model with linear
innovation technology. With a smaller 7, the present value of a new product is reduced, and the condition is more
stringent.

22«Asymptotic” because the system of differential equations only admits a fixed point for N, = oco. Technically,
there is a steady state for the transformed system in Appendix A3, where the number of product N, is replaced by
an inversely related variable n,, which is zero in steady state. Further, multiple steady states with G,, > 0 are
technically possible but unlikely for reasonable parameter values (see online Appendix B5.2). In all our numerical
simulations, the steady state was unique and saddle-path stable.
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long run. In other words, the path of technological change itself will be unbalanced
through the transitional dynamics. To understand this result, we now explain the
evolution of the automation incentives, which, we show, are crucially linked to the
level of low-skill wages.?

Following (16), the mass of high-skill workers in automation (H%
= (1 = G,)N,h!) and therefore the automation intensity rate, given by
nGF(H? /(1 — G,))", depends on the ratio between the gain in firm value from auto-
mation VA — VY and its effective cost, namely the high-skill wage divided by the
number of products wy, /N, :

1/(1-k)
V=V
19 H' = (1-G Gy ———+
(19) 1 ( z)<m7 t WHt/Nt>
Crucially, as the number of products in the economy increases, the ratio
(V& — V¥ /(wy,/N,) evolves. Combining (14), (15), and (16) gives the difference
in value between an automated and a nonautomated firm:

(200 VA VN = ftooexp<—f:rudu> (nt = a = L=ty nt)ar,

which is the discounted difference of profit flows adjusted for the cost and proba-
bility of automation. Recall that Cobb-Douglas production and isoelastic demand
imply that both high-skill wages (for given HY) and aggregate profits are pro-
portional to aggregate output. Therefore, wy,/N, is proportional to average prof-
its: wy,/N, = [G,m 4+ (1 — G)7N]/[HF]. As a result, the mass of high-skill
workers in automation moves with the discounted flow of profits of automated ver-
sus nonautomated firms divided by average firm profits. Intuitively, with a positive
discount rate, VA — VY moves like 7/ — 7V as a first approximation (from equa-

tion (20)), so that we get

vi-ve o weal 1= (Lkewi!)
Wi/ Ny G, + (l—G,)ﬂﬁv G, + (1_G1)(1+80W;;])7

(1)

B

where & denotes “approximately proportional” and we used equation (8). This
highlights low-skill wages (relative to the inverse productivity of machines ¢ ')
as the key determinant of automation innovations. When w;, ~ 0, the incentive for
automation innovation is very low, whereas when w;, — o0, it approaches a posi-
tive constant. This price effect bears similarity to Zeira (1998), where the adoption
of a laborsaving technology also depends on the price of labor.**

23 These results extend to the case where the skill supply is endogenous. See online Appendix B9.

24Beyond a focus on different empirical phenomena (an increase in inequality versus cross-country productiv-
ity differences), there are three important differences between our model and Zeira (1998). He assumes exogenous
technical progress and focuses on adoption, while we model two types of endogenous innovation. The innovation
cost changes over time in our model, while the cost of adoption is zero in Zeira (1998). As a result, automation is
not laborsaving for the aggregate economy in his model.
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Low Automation: When the number of products, N,, is low enough that wy, is
small relative to ¢!, the difference in profits between automated and nonautomated
firms is small relative to average profits. Following (19) and (21), the allocation
of high-skill labor to automation, H?, is low, and automation intensity is low.
Consequently, as stipulated in Proposition 3B, growth is driven by horizontal inno-
vation, and the behavior of the economy is close to that of a Romer model with
a Cobb-Douglas production function with low- and high-skill labor. Both wages
approximately grow at a rate g% /(o — 1), and the labor share is approximately con-
stant. Note, G, depreciates following equation (12).

Rising Automation: As w;, grows relative to @ !, the term (V2 — VV)/(wy,/N,)
increases, which raises the incentive to innovate in automation. Without the exter-
nality in the automation technology (¢ = 0), (19) directly implies that H must rise
significantly above zero, and with it the Poisson rate of automation, n (H7 /(1 — G,))"
and thereby the share of automated products, G,. For & > 0, the initial deprecia-
tion in the share of automated products gradually makes the automation technology
less effective, which delays the takeoff of automation. Our initial assumption that
knowledge spillovers are not too large (¢ < 1 — x(1,= [3)) is a sufficient (but not
necessary) condition for the takeoff to always happen.?

Following Proposition 1, the increases in G; and NV, lead to an increase in the skill
premium and a decline in the labor share.? For some parameters, low-skill wages
temporarily decline (see numerical examples in online Appendix B6.2).>” Arguably,
this is where our model differs the most from the rest of the literature, notably
because a model with fixed G, a capital-skill complementarity model like KORYV,
or a factor-augmenting technical change model with directed technical change as
Acemoglu (1998) does not feature laborsaving innovation and therefore cannot lead
to a decline in low-skill wages.

High but Stable Automation: With the share of automated products, G,, no longer
near zero, the gain from automation V4 — V¥ and its effective cost wy,/N, grow at
the same rate (the right-hand side in (21) is close to 1/G,). As a result, the normal-
ized mass of high-skill workers in automation research (N,A%) stays bounded (see
(19)), and so does the Poisson rate of automation, such that G, converges to a positive
constant below one. The economy then converges toward an asymptotic steady state

25 Alternatively, if we assume that the automation technology obeys max{n G¥,n}(N,k)" with n > 0, then
automation always takes off. B B

26Changes in the mass of high-skill workers in production, H?, also affect the skill premium and the labor share.
Increasing G, requires hiring more high-skill workers in automation innovation (in the same vein as the General
Purpose Technology literature, notably Beaudry, Green, and Sand 2016), but at the same time horizontal innovation
declines on average during this time period, which increases H?.

27 Generating a decline in low-skill wages is harder with endogenous than exogenous technical change because
a decline in low-skill wages reduces further automation, which is why the decline is temporary. Whether low-skill
wages have declined in the data depends on how one accounts for compositional changes in the low-skill popula-
tion, work benefits, and the deflator (see Section ITIC).
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where Proposition 2 applies. High-skill wages grow at the same rate as output, and
low-skill wages grow at a positive but lower rate, while the labor share stabilizes again.

With positive growth in low-skill wages, the profits of nonautomate(pi]
firms become negligible relative to those of automated firms with g7
= gz;;‘ — B(o — 1) ght. As total profits are proportional to output, the profits and
value of automated firms grow at the rate of output minus the growth rate of the
number of products: gX: = g;:’j = gl — ¢ Asymptotically, the value of a
nonautomated firm entirely lies in the possibility of future automation. Therefore,
it grows at the same rate as the value of an automated firm: ggg = g‘o/:; . In other
words, the prospect of future automation eventually guarantees the entry of new
products.” The model continues then to differ from a generic capital deepening
model since the share of automated firms G, is only constant thanks to the inter-
play between horizontal innovation and automation while the long-run growth rate
depends on automation. Online Appendix B5.6 derives comparative statics in the
steady state and shows that the asymptotic growth rates of GDP and low-skill wages
increase in the productivity of automation 7 and horizontal innovation +.

Overall, our model predicts that we should see an increase in automation as an
economy develops, consistent with the increase in automation innovations observed
since the 1970s (as documented in panel C of Figure 1). In line with the results
of Section I, this increase in automation is associated with an increase in the skill
premium and a decline in the labor share, which have also been observed in the
United States (panels A and B of Figure 1). This contrasts our paper with most of
the growth literature, which relies on exogenous shocks to explain these trends.
Section III shows that an extended version of our model can reproduce those trends
not only qualitatively but also quantitatively.

D. Interactions between Automation and Horizontal Innovation

Before moving to the quantitative exercise, we show how the interactions between
automation and horizontal innovation can help account for two puzzles in the liter-
ature on inequality and technical change.

Increasing Automation and Decelerating Skill Premium: In recent years, the
growth rate of the skill premium has declined (see panel A of Figure 1), while at
the same time, innovation has been more directed toward automation (panel C of
Figure 1). At first glance, this seems to contradict an explanation of the increase
in the skill premium by automation. Yet in our model, there is no one-to-one link
between the growth rate of the skill premium and the direction of innovation.
First, the share of automated products G, can be understood as a stock variable
that increases with the automation of not-yet automated products but depreciates

28The economy would not admit such an asymptotic steady state if automation was entirely undertaken by
entrants replacing the incumbents. In that case, the value of creating a new product would only correspond to
the discounted flow of profits of a nonautomated firm, which grows slower than the cost of horizontal innovation
(high-skill wages normalized by N,), and horizontal innovation could not be sustained. In contrast, the steady state
would still exist if the incumbent also automated with positive probability or captured a share of the surplus created
by an automation innovation.
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through horizontal innovation. As a result, maintaining a high level for G, requires
a high level of automation innovations. Typically, the skill premium rises the fastest
when G, increases sharply and decelerates when G, approaches its steady-state value,
which may, however, be when innovation is the most intensely directed toward auto-
mation (this happens both in Section III below and in the numerical simulation of
online Appendix B6.1). Second, since our model does not feature a CES production
with factor-augmenting technologies (as Katz and Murphy 1992, Acemoglu 1998,
or Goldin and Katz 2008), the elasticities of the skill premium with respect to the
two technology variables (G, and N,) are not constant.

Automation with No Increase in Growth: A second puzzle is that as the skill pre-
mium has increased, GDP growth has not accelerated, which casts doubt on whether
a technological revolution is happening (see Acemoglu and Autor 2011). Our model
offers a potential explanation: horizontal innovation may decline when automation
takes off, with an ambiguous net effect on growth. Formally, we find that the rate
of horizontal innovation is lower in the steady state than for low N, (proof in online
Appendix B5.5).

COROLLARY 1: For any G, there exists an Ny sufficiently low that the horizontal
innovation rate, gV, is initially higher than in the asymptotic steady state.

Intuitively, three effects explain this result: First, once automation sets in, some
high-skill workers are hired in automation research, which reduces the amount
of high-skill workers in production and therefore reduces horizontal innovation
through a classic scale effect. Second, the elasticity of GDP growth with respect to
horizontal innovation is larger in the asymptotic steady state, which, from the Euler
equation, increases the elasticity of the interest rate with respect to horizontal inno-
vation and reduces horizontal innovation. Third, asymptotically, a new firm makes
negligible profits relative to the cost of innovation until it gets automated, which
further reduces horizontal innovation.

III. Quantitative Exercise

We conduct a quantitative exercise to compare empirical trends for the United
States with the predictions of our model. We proceed in three steps. First, we cali-
brate our model, then we show that the data call for an increase in the share of auto-
mated products G and assess how well our model can do relative to a more flexible
setup with exogenous technology. Finally, we analyze the future evolution of the
economy.

A. Extended Model and Calibration

To match the data quantitatively, we modify the baseline model. First, since the
share of high-skill workers has dramatically increased, we let H and L vary over time
and use the paths from the data. Second, we assume that producers rent machines
from a capital stock. Capital can also be used as structures in both automated and
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nonautomated firms. Third, we allow for the possibility that low-skill workers are
replaced by a composite of machines and high-skill workers. The production func-
tion (2) becomes

e
e—1

(22) (i) = [l(i)%—i—oz(i)(gbhe(i)mke(i)l‘@) ¢ ]:hs(l-)ﬁzks(l-)@g’

where 3, + 6, + 53 = 1 and B, € [0,1). The central difference between equa-
tions (2) and (22) is the introduction of £,(i) as high-skill labor, which—along with
machines—performs the newly automated tasks (“e” for equipment). This feature is
necessary to capture a relatively low drop in the labor share. Here, k(i) is structures
and k,(i) and k(i) are both rented from the same capital stock K,. The value of K,
increases with investment in final goods and depreciates at a fixed rate A, so that

(23) K, = Y,—C,— AK,.

The cost advantage of automated firms now depends on the ratio between low-skill
wage and the price of the high-skill labor capital aggregate, wy,/ (wfj‘, 7,
where 7, = r,+ A is the gross rental rate of capital. The logic of the base-
line model directly extends to this case. Proposition 1 still holds, and
Proposition 2 holds with g% = g% = oV /((8, + 3, B4)(c — 1)) and

e = gt (14 (0 —1)B184)/(1 + Bi(c — 1)). An equivalent to Proposition 3
holds, but the system of differential equations includes three control variables and
three state variables. The transitional dynamics are similar to that of the baseline
model, but automation innovation now depends on WL,/(WZ“, 717%): automation
innovation is low when N, is low, increases later on before stabilizing as the econ-
omy approaches its asymptotic steady state. The capital share and the capital output
ratio increase when automation increases as equipment replaces low-skill labor in
production. Details and proofs are provided in online Appendix B10.

We match our extended model to the data (see online Appendix B11 for details).
We identify low-skill workers with non-college-educated workers and high-skill
workers with college-educated workers and focus on the years 1963-2012 (workers
with “some college” are assigned 50/50 to each category following the methodol-
ogy of Acemoglu and Autor 2011). We match the skill premium and take the empir-
ical skill ratio as given (and normalize total population to one). We also match the
growth rate of real GDP/employment and the labor share. We associate the use of
machines with private equipment (excluding transport) and software. As pointed out
by Gordon (1990), the NIPA price indices for real equipment are likely to understate
quality improvements in equipment and therefore growth in the real stock of equip-
ment. Hence, we use the adjusted price index from Cummins and Violante (2002)
for equipment and build (private) equipment and software to GDP ratios from 1963
to 2000.

Our model is not stochastic and cannot be directly estimated. Instead, we take a
parsimonious approach and choose parameters to minimize the weighted squared
log-difference between observed and predicted paths. We start the simulation
40 years before 1963 to force Njgq3 and Gjog3 to be consistent with the long-run
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TABLE 1—PARAMETERS FROM QUANTITATIVE EXERCISE

Parameter o € 5 ¥ R 0 n K
Value 5.86 4.28 0.58 0.44 0.55 1 0.40 0.68
Parameter p Ba A B @ Nige3 G963

Value 0.033 0.18 0.011 0.73 1.57 10.3 0.02

behavior of our model.* Since the model requires the skill ratio before and after the

time period we estimate, we fit a generalized logistical function to the path of the
log of the skill ratio and use the predicted values outside 1963-2012 (over that time
period, the fit is excellent).

The model features a total of 13 parameters with 2 initial conditions Njg,3
and Gigy3. We allow all parameters to adjust freely (other than the economically
motivated boundaries imposed by the model itself) and then assess whether these
parameter estimates fit with other similar estimates. W gives the resulting
parameters and the values of the state variables N, and G, in the first matched year,
1963. The elasticity of substitution across products o is estimated at 5.86, in line with
Christiano, Eichenbaum, and Evans (2005), who find that observed markups are
consistent with a value of around 6. The elasticity of substitution between machines
and workers is estimated at 4.28. The value of & is estimated at 0.55, implying a sub-
stantial automation externality, a force that accelerates the increase in the share of
automated products. Finally, we find a (3;—the factor share of machines/low-skill
workers—of 0.58, which implies sizable room for automation, though a 3, of 0.73
means that the share of high-skill workers in the composite that replaces low-skill
workers is of substantial importance. The preference parameters are within standard
estimates with a p of 3.3 percent and the implied 6 resulting in log-preferences. The
only parameter that is estimated outside a common range is the depreciation rate A
(though it is not precisely identified). Online Appendix B11.3 discusses in detail
how the parameters are identified.

Figure 3|further shows the predicted path of the matched data series (“endogenous
technology” series—the “exogenous” series will be explained in Section IIIB) along
with their empirical counterparts. Panel A demonstrates that the model matches
the rise in the skill premium from the early 1980s and the flat skill premium in the
period before reasonably well. Though a bit less pronounced than in the data, our
model also includes the more recent decline in the growth rate of the skill premium,
which, computed over a 5 years moving window, peaks in 1984 at 1.31 percent
and drops to 0.52 percent in 2005. The total predicted decline in the labor share
(8.7p.p.) is slightly higher than the actual one (6.6 p.p.).’ The average growth rate
of the economy is matched completely, as shown in panel C. Although the model
largely captures the average growth rate of capital equipment over GDP during the

2%Tnitial values for G, and K, have little impact on the state of the economy several years later. By simulating the
economy 40 years prior, we ensure that the simulated moments are nearly independent of the initial values for G,
and K,. We fix K/, at its steady-state value in a model with no automation.

390ur model sees the decline in the labor share as being a gradual phenomenon (instead of a sharp trend break
from 2000), in line with the interpretation of Karabarbounis and Neiman (2013) and data on the global labor share.
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FIGURE 3. EMPIRICAL PATHS AND PREDICTED PATHS FOR THE ENDOGENOUS AND EXOGENOUS TECHNOLOGY MODELS

period, the predicted path differs somewhat from its empirical counterpart, as shown
in panel D on log-scale. Whereas the empirical path is close to exponential, the
predicted path tapers off somewhat toward the end of the period.”! Naturally, our
model has a harder time capturing higher-frequency movements, such as a tempo-
rary increase in the labor share at the end of the 1990s. Further, to assess the predic-
tive power of our model, we reproduce the same exercise but only matching the first
30 years. Appendix A4 reports the results: the parameters are nearly identical, and
the calibrated model performs well out of sample.

As shown in Table 1, the share of automated products G, is low in 1963 at 2.5 per-
cent, far from its steady-state value of 92 percent. Figure 5 below shows that G,
increases sharply through the 1963-2012 time period and reaches 20 percent by
1986 and 64 percent by 2012. Therefore, our calibration strongly suggests that auto-
mation has risen in recent decades.

B. Alternative Technological Processes

Section IC argued that a rise in the skill premium and a decrease in the labor
share are consistent with an increase in the number of products together with either
a rising or constant (but positive) share of automated products. It is therefore worth

31Recall that the ratio of equipment to GDP in the data is only a proxy for the ratio of machines to GDP in the
model since not all equipment is used to replace low-skill workers. Interestingly, more recent data show a slowdown
in software investment (see Beaudry, Green, and Sand 2016; Eden and Gaggl 2018).
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FIGURE 4. EMPIRICAL AND PREDICTED PATHS FOR A MODEL WITH CONSTANT G

asking which features of the data require an increase in the share of automated
products G,. To answer this question, we consider an alternative model where G is a
constant. We use the same procedure as above to calibrate this alternative economy
but let G and the initial capital stock K;q63 be free parameters. compares the
empirical paths of the skill premium and the labor share with the ones predicted by
a constant G model and shows that this alternative model does not match the data.
Intuitively, a model with constant G has a hard time reconciling a roughly constant
skill premium followed by a fast rise without a sharp increase in economic growth.
Online Appendix B11.4 shows the two other moments and reports the parameters.
Our paper argues that the evolution of the income distribution in the United States
can largely be accounted for with endogenous technical change. This is in contrast
with an alternative view that stresses the importance of structural breaks in the data.
To evaluate how well our endogenous innovation model performs, we compare it
to a model with exogenous technology. We keep the (non-innovation) parameters
from Table 1 but let N, and G, be free parameters between 1963 and 2012 chosen to
match the empirical moments as close as possible.’” Figure 3 shows the predicted
paths for our moments in that case (“exogenous technology” series). This model
performs slightly better than the endogenous one, notably when it comes to labor
productivity fluctuations, but it does not capture trends better. compares
the evolution of N, and G; in our endogenous growth model with this exogenous
alternative. Panel B shows that the exogenous path for G, also features a smooth
but sharp increase from 1980 but the path of our endogenous growth model is very
similar. Panel A shows that the exogenous path for N, is more volatile than the
endogenous path since the exogenous model tries to better capture the short-run
fluctuations. The trends, however, are similar. This pattern is robust to including
exogenous labor-augmenting technical change (see online Appendix B11.5).

32Since K, still evolves endogenously, this corresponds to a Ramsey model with fully anticipated shocks to N,
and G,. We let the initial capital stock Kjog3 be a free parameter as well. For the technology paths after 2012, we
let N, grow at a constant rate, which is another free parameter, and assume that G, stays constant at its 2012 value.
To facilitate comparison, we also assume that HY in the exogenous growth model is fixed to be the same as in the
endogenous growth model.
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FIGURE 5. PATHS FOR N, AND G, IN THE ENDOGENOUS AND EXOGENOUS GROWTH MODELS

Panel B of Figure 5 shows that the increase in G, must be sharp to match the
data, which is why our estimation procedure found a high value for the automation
externality parameter & = 0.55. Appendix A4 discusses this further by calibrating
the model with & = 0 and showing that in this case, the endogenous and exogenous
growth models deliver very different paths for G,.

C. Evolution of the Calibrated Economy

further analyzes the behavior of the calibrated economy by plotting the
transitional dynamics from 1963 to 2063. Panel A shows that GDP growth slows
down past 2012 in line with recent economic trends—as argued in Section IID,
our model can account for a slowdown in growth despite a high level of automa-
tion innovation thanks to a decline in horizontal innovation. Panels A and B show
that the skill premium keeps growing albeit at a slower rate: over the 1980s, the
skill premium grew at an average of 1 percent per year according to the model
and 0.7 percent in the 2000s, with a predicted growth rate of the skill premium of
0.2 percent in the 2050s as the share of automated products stabilizes. In the context
of Proposition 1, for our parameters automation is always low-skill laborsaving and
horizontal innovation low-skill biased. In the meantime, the labor share smoothly
declines toward its steady-state value of 52.8 percent, and the high-skill labor share
increases.’? Panel C plots the share of automated products G,, which keeps ris-
ing very slowly past 2012 toward its asymptotic value at 92 percent. The share of
automation innovations is already above 40 percent in the mid-1970s and increases
steadily until the 2000s (panel C). It peaks in 2005, even though the skill premium is
decelerating. As argued in Section IID, this occurs in part because the level of auto-
mation can be thought of as a stock that depreciates with the entry of new products.
This constitutes a response to the critique of the literature on SBTC put forward by

33With the decline in horizontal innovation, fewer high-skill workers are allocated to innovation activities over-
all, which also contributes to the decline in the labor share notably from the mid-1980s.
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FIGURE 6. TRANSITIONAL DYNAMICS WITH CALIBRATED PARAMETERS

Note: The growth rates are computed over a five-year moving average.

Card and DiNardo (2002), who argue that inequality rising the most in the early to
mid-1980s and technological change continuing in the 1990s squares poorly with
the predictions of a framework based on SBTC. The model predicts that the share
of automation innovation will remain high in the future but at a slightly lower level
than in the 2000s.

Acemoglu and Autor (2011) highlight that low-skill wages have declined since
the 1980s, and we reproduce their series from 1963 to 2012 in panel D. Our model
does not distinguish between wages and other labor costs, so that any mention of
wages so far should be understood as labor costs. At the same time, there has been
a significant decline in the ratio of wages to total labor costs (from close to 1 to
around 2/3 in our data).* Panel D plots our predicted low-skill labor costs (w;)
and the take-home low-skill wages (net of work benefits, social contributions, etc.).
Our model predicts a very slow growth for low-skill labor costs (70 percent over
50 years), which is consistent with stagnating take-home low-skill wages. Online
Appendix B11.6 analyzes the effect of taxes on machines and automation innova-
tions on low-skill wages and output.

Our exercise bears similarities to KORYV, who also seek to explain the increase
in the skill premium using capital-skill complementarity while matching the labor
share. There are four major differences. First, our exercise is more demanding since
instead of directly feeding in the empirical path of equipment, we calibrate a general

34 Obtaining these figures requires combining several indices, which are not perfectly consistent; nevertheless,
the trend is clear—see online Appendix B11.2 for details.
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equilibrium model that endogenizes both capital and technology.?” Second, KORV
do not attempt to match the evolution of labor productivity: given the large increase
in the stock of equipment capital, their model would have to feature a large simul-
taneous unexplained decrease in the growth rate of TFP. Third, their model does not
match a decline in the labor share, but instead shows a slight increase toward the
end of their sample period. This is not an artifact of their calibration but a feature of
their model. Their production function is a nested CES where low-skill labor is sub-
stitute with a CES aggregate of high-skill and equipment, which are complement.
Therefore, should the equipment stock keep rising (through investment-specific
technological change), the income share of equipment would decline in the long
run.”® Fourth, their model does not feature laborsaving innovation, as an increase in
investment-specific technical change increases all wages for perfectly elastic capital
(online Appendix B12 elaborates on the last two points).

To summarize, our model makes the case that recent trends in the skill premium,
the labor share, labor productivity, and the ratio of equipment to GDP can be quan-
titatively explained as resulting from an endogenous increase in the share of auto-
mation innovations. This provides a different view of these trends as arising from
the natural development of an economy instead of exogenous shocks. Furthermore,
this viewpoint also explains why the rise in the skill premium was not accompanied
by an increase in productivity growth and why the skill premium has decelerated
despite a high share of automation innovations. Of course, our model cannot match
the data perfectly. In particular, we do not capture high-frequency movements, and
we overestimate the decline of the labor share. Our exogenous N, G exercise shows
that to better account for the data, one would have to modify the aggregate produc-
tion function.

D. Data on Automation Innovations

We now provide some evidence based on patent data that suggests that the share
of automation innovations has increased since the 1970s in line with our model.
Classifying patents as automation versus nonautomation is not straightforward, and
there are no technological codes in patent data aimed at doing so. Nevertheless,
in a recent working paper, Mann and Piittmann (2018) classify US patents as
automation versus nonautomation using machine learning techniques (see online
Appendix B11.2 for details). Panel A of reports the shares of automa-
tion patents according to their analysis and according to our calibrated model. In
line with our model, the share of automation patents according to their definition
has markedly increased. Relative to their series, our model suggests a higher share
of automation innovations (particularly at the beginning of the sample), but the
increase is of a similar magnitude.

35Others have tried to match similar trends, such as Eden and Gaggl (2018) using a model similar to KORV or
Goldin and Katz (2008) using the traditional model of SBTC with factor-augmenting technologies.

361f low-skill labor were substitute with a Cobb-Douglas aggregate of high-skill and equipment (as in our auto-
mated firms), the capital share would increase in the long run. Yet the growth rate of the skill premium would then
increase when investment-specific technological change accelerates, so such a model could not feature a decelera-
tion in the skill premium when innovation seems to be the most biased against low-skill workers, as in our model.
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FIGURE 7. TRENDS IN AUTOMATION INNOVATIONS

Dechezleprétre et al. (2019) offer an alternative classification of automation ver-
sus nonautomation patents in machinery, which relies on the technological codes
of patents and the presence of certain keywords in the text of patents (see online
Appendix B11.2 for details). They show that the share of automation patents in
machinery is correlated with a decline in routine tasks across US industries and,
using international firm-level data, that higher low-skill wages lead to more automa-
tion innovations but not more nonautomation innovations. Their classification only
allows for the identification of a subset of automation and nonautomation patents.
Yet provided that these subsets are constant shares of both types of innovations,
we can use the increase in the log ratio of their automation versus nonautomation
patents as a proxy for the increase of automation versus horizontal innovation in our
model. We plot the model and data series (indexing the log ratios at zero in 1963) in
panel B of Figure 7. Here as well, we find similar trends—except for a small decline
between 1984 and 1994 in the data. Any series based on patenting will be a noisy
proxy for true underlying automation innovation. Despite this, both of these mea-
sures suggest that automation increased since the 1970s and is still very high today,
in line with the predictions of our model.

IV. Conclusion

This paper introduces automation in a horizontal innovation growth model. We
show that an increase in automation leads to an increase in the skill premium, a
decline in the labor share, and possibly a decline in low-skill wages. Moreover, such
an increase in the share of automation innovations is the natural outcome of a grow-
ing economy since higher low-skill wages incentivize more automation innovations.
Quantitatively, our model can replicate the evolution of the US economy since the
1960s: a continuous increase in the skill premium with a more recent slowdown, a
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decline in the labor share, stagnating labor productivity growth, and an increase in
the share of automation innovations. We predict that the skill premium keeps rising
in the future albeit at a lower rate and that the labor share stabilizes at a rate below
today’s.

The increase in the share of automation innovations, which prompts changes in
the income distribution, occurs endogenously in our paper. This stands in contrast
with most of the literature, which seeks to explain changes in the distribution of
income inequality through exogenous changes: an exogenous increase in the stock
of equipment as per KORYV, a change in the relative supply of skills as per Acemoglu
(1998), or the arrival of a general purpose technology as in the related literature.
This feature is shared by Buera and Kaboski (2012), who argue that the increase
in income inequality is linked to the increase in the demand for high-skill intensive
services, which results from nonhomotheticity in consumption.?’

The present paper is only a step toward a better understanding of the links between
automation, growth, and income inequality. Given that automation has targeted
either low- or middle-skill workers and that artificial intelligence may now lead to
the automation of some high-skill tasks, a natural extension of our framework would
include more skill heterogeneity. Another natural next step would be to add firm
heterogeneity and embed our framework into a quantitative firm dynamics model.
Our framework could also be used to study the recent phenomenon of “reshoring,”
where US companies that had offshored their low-skill intensive activities to China
now start repatriating their production to the US after having further automated their
production process.

APPENDIX A. MAIN APPENDIX
Al. Proof of Proposition 1

We focus on the imperfect substitute case, and online Appendix B1.1 deals with
the perfect substitute case. Rewrite (7) as

wg _ 1=BpL G(1+<pw2_1)ﬂ+l—G

(A1) i _ a - .
P H G ews) v 1-6

Since 0 < p < 1, (Al) establishes wy, as a function of G, H, and w; such that wy
is increasing in w; and G and decreasing in H”, withwy/w, > (1 — 8)/8 x L/H"
forG > 0.Equation (6) similarly establishes wy as a function of N, G, and w;, which
is decreasing in wy and increasing in N and G. Then, wy, w; are jointly uniquely
determined by (A1) and (6) for given N,G, and H”. Both increase in N, and wy
increases in G. In addition, (6) traces a convex isocost curve in the input prices plan.

In addition, (A1) shows that wy/w; increases with w;. Since w; increases in N,
then wy/w; increases in N as well. If w; decreases in G, then since wy increases
in G, wy/w; increases in G. If instead w; increases in G, then the right-hand side

37This feature is also shared by Galor and Weil (2000) and Hansen and Prescott (2002), who endogenize the
industrial revolution takeoff.
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of (Al) increases with G both directly, and because w; increases, this ensures
that wy/wy still increases in G. Therefore, both an increase in N and an increase
in G are skill-biased and following (9) decrease the labor share. This establishes
Parts A and B except for the relationship between w; and G.

Comparative Statics of w; with Respect to G: Combine (A1) and (6) to get

1-3

w2 = o () N (G (ko) (- )

4 L7(175)

(ol - a)

Log differentiating with respect to G, one obtains
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7(176) 71 n—1 1 H D—en’
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Note, Den > Oase > 1, u € (0,1), and WWLH G(IJHPLVL ) < 1.
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In (A3), the scale effect term is positive as (1 + @ w§ ')* — 1 > 0. This term comes

from the differentiation of (6) with respect to G at constant wy (hence, it rep-

resents the shift right of the isocost curve). The substitution effect term is negative

because 1 — (1 +@wi )*~! > 0since u < 1, it comes from the differentiation

of (7) with respect to G.
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First note thatif 1 /(o — 1) < 1 — [, the scale effect is always dominated by the
substitution effect. Hence, w; is decreasing in G.

If instead 1/(c — 1) > 1 — f3, the scale effect is dominated by the substitution
_ PN 1"
effect provided that Ry = 1—{ +¢va| ) / Ut owi 3 s large
Gl+oewi)' +1-G G +ewi") +1-G

enough. From (A2), we get
1-p

pn—1
pl—G(l— 1+ owi! )

7 La((t4ow) —1) 41

L
o—1

I
x (G((l +owi ) — 1) + 1)
Using that G € [0, 1], we obtain that

wo(1+owi )" > 2= La(mryn)' N,

which ensures that limy_, w; = oo uniformly with respect to G (i.e., for
any w; > 0, there exist N such that for any N > N and any G, w > w,).
Since lim,, ., .1 Ry = oo, we get that limy_,, 5. Ry = 00, so that for N and
G large enough the substitution effect dominates. This establishes Part B.

Part C: Log-differentiating (A2) with respect to N gives w;, = N/[(oc — 1)Den].
We then combine this expression with (A3) and use that for an increase in the number
of nonautomated products only, NG is a constant so that G = —N. Denoting W}
(NT for “new tasks”), the change in w;, we then get

1=pa((evi)'=1) | (1=9)60-(1+ o))
Gl+ewi) ' +(1-6)  G(1+owi")" +(1-0)

(A4) W) =

(c-1)~" ]N
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+

Hence, low-skill wages always increase with the arrival of nonautomated products.
Log-differentiating (7), one gets
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Using (A4) and that G = —N, we get that following an increase in the mass of
nonautomated products (keeping NG constant),

~NT  ~ANT _ M(l + ‘PWZ_I)M (1—p) (1 + ‘pwz_l)“_l
Wg —wp = INZ + u—1
G(l+ewi") +1-G G(1+ewi!) +1-G
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N A
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which simplifies into
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Therefore, an increase in the mass of nonautomated products reduces
the skill premium (and increases the labor share) if and only if 1 — (3
> ((e—=1)/(c —1) = B)/(1 + @wi ). This in turn is true for w, sufficiently
large (that is N large enough) or fore < o.

Combining (AS) with (A4), we further get
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Therefore, an increase in the mass of nonautomated products leads to higher
high-skill wages. This establishes Part C. B
A2. Proof of Proposition 2
To see that w;, is bounded from below, assume that liminfw;, = 0. Then

as H” and G, admit positive limits, (7) implies that liminfwy, = 0. Plugging this
in (6) gives liminfN, = 0, which is impossible since gV admits a positive limit.
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Therefore, w;, must be bounded below, so that (6) gives g = g, where
v = ((1 — B)(o — 1))~". Further, using that H? admits a limit and that

(A6) wiH = (1—8) 251y,

gives the growth rate of Y,. To derive the asymptotic growth rate of w;,, we consider
in turn the cases ¢ < ocand e = oo.

Subcase with ¢ < co.—We use equation (A2), which gives wy, as a function
of N,,G,, and H?. Assuming that liminfw,, is finite leads to a contradiction, so
that wy, tends to co. Then (A2) implies that for G, < 1,

v~ ((2520)”

where x, ~ y, signifies x,/y, — 1. This delivers (11).
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Subcase with e = oo.—Low-skill wages are now defined as described in online
Appendix B1.1, and equation (11) immediately follows from G, < 1.1

A3. Analytical Appendix to Section 2

In this Appendix, we derive the system of normalized equation that character-
izes the equilibrium and prove Proposition 3. Online Appendix B5 contains the
proofs of intermediate results, of Corollary 1, and additional results mentioned in
the text.

A3.1 Normalized System of Differential Equations.—Following Proposition 2,
high-skill wages, output, and consumption grow asymptotically proportionately to N
with 90 = ((1 — B8)(c — 1))~ when g% > 0 and G, > 0. Therefore, to study
the behavior of the system, we introduce the normalized variables v, = wy, N, *
and ¢, = ¢,N, Y. As h mechamcally tends to zero as the mass of nonautomated
firms grows, we introduce h, = N,h?. We define y, = ¢, / v, which allows
to simplify the system (X: is related to the mass of high-skill workers in produc-
tion and therefore, given ht, to H? and g?). Since the economy does not feature a
nonasymptotic steady state, we need to keep track of the level of N, by introduc-
ingn, = N, B/11-)(1+ 3o —1) , which tends toward zero as N, tends toward infinity.
Finally, we define w, = (WL,N,_ v/ (1+ﬁ(”_1)))ﬂ(17”), which asymptotes a finite posi-
tive number.

We now derive the system of differential equations satisfied by the normalized
variables (n;,G,, h;, x;). By definition, we get

o B .
A YR
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Rewriting (12) with A gives

. PN K
(A8) G, = nGi (i) (1-G) -Gl
Defining normalized profits #4 = N!"¥74and #¥ = N!"¥ 7" and the normalized

values of firms V4 = N!™“VAand V¥ = N!=Y VY, we can rewrite (14) and (15) as
(A9)  (n—(¢—1)g") Vi = &1+ V1,
A JOVEN K/ A A A A~
(A10)  (ri— (v —1)gM) VN = &N 0GF (R)) (VF = V) = 9,0 + V.
Equation (16) can similarly be rewritten as
= (7 =1/ A > A
(A11) knGy(RY) (VA=) = b,

Equation (17) implies that V' = 9,/, therefore using (A11) into (A10), we get

(A12) (= (0= 1)g)) 0 = v + 7 LB 00 + 5,
. B(l-o) .
Since wi, = w,n,;, we have using (8),
AN L o A A
(A13) Y = w,nt(go + (wtnt)#> i

Combining (A8)-(A13), we derive in online Appendix B5.1

—H
XA vfz’?wtn,(cp + (wtnt)%) 7%114
(A14) h, = (1 — /<;) :,
’Y(}Al?)z ’fnt (ltl?)l{<1 - wt”t(@ + (tht)%) ﬂi) 7%?
TR T (1—r)b
_2A p
+nGE (i) + 2 (nGE (i) (1~ G) - &),

Rewriting (18) leadsto r, = p + 0¢,/¢, + 01 gY. Using this with (A12) and (A13),
we get

(A15) Xi = Xz(’thnt(QO'F (w,n,)%) =

+71;“ﬁ?—p—(9w—w+1)g¢>.
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Together equations (A7), (A8), (A14), and (A15) form a system of differential
equations that depends on w,, 4 /9,, and g~. To determine #4 /9,, note that profits
are given by

(A16) W(WL,WH,Oé(i)) = _—UC(WL,WH,Oé(i)) Y.

Using (3) and the definition of w,, one gets

g (o-1)7 3 1-5) 7! T
(A17) ) = T(ﬂ (1 - 5) ) (80"‘ (wtnt)'u) W Y
Rearranging terms in (6) gives
1 [0}
_ -3 B H
A18) %, = (2=1)" g1 - ) (G(<p+ (win)?) + (1 —G)w,nt> .

Using the relationship between the high-skill wage bill and output in (A6), we get

(A19) Y, = o)d,H'NY.
Therefore, rewriting (A17) with (A18) and (A19), one gets
NG
ﬁ";‘ (0 (SO + (wtnt)ﬁ) Hf

(A20) ~ — M .
D, 1
G(gp + (w,nt)#) + (1 = G)wn,

which still requires finding HY. Using (3), (4), x/I = pwj, and aggregating over
all automated firms, one obtains the total demand of machines:

pn—1

X, = 86N (T3 ) (1= )0 (o4 (am)h) wir ¥,

Using (A18), this expression can be rewritten as
1
1 BGp (90 + (Wz”t) “)

1\
G(go + (wny) ﬂ) + (1 = G)wn,
This together with (A19) implies that ¢, obeys

pn—1

(A21) X, = 2>

- Y,

1 pn—1
N . 1 /BGt()O((P + (tht)“)

¢ = & NG o, HY.
G(cp + (w,nt)/_t) + (1 = G)wn,

Combining this equation with (A18) leads to

o' I

—_— 1 L 1 v“)(
(7254 (1= i (6 (o + )+ (1 - G)owm)

(A22) H! = ) N
Gz<<1760;1)@+(wtnt)ﬁ> (SQJF (Wz”t)ﬂ) Jr(l 7Gt)wt
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Using the definition of H?, one can rewrite (13) for high-skill workers as
(A23) gV = y(H—H — (1-G)ht).

Together (A20), (A22), and (A23) determine 74 /9, and g as a function of the orig-
inal variables n,, G,, h?, X; and of w,, which still needs to be determined. To do so,
combine (7) and (6) to obtain an implicit definition of w,:

p—=1 1—p

(A24) w, = [(0—01 ﬁ)‘l‘?’%(q(w(wmtﬁ) (w,nt)7+(1—Gt)>

B(1-0)

NG Y—1| 1+8(o—1)
X <Gt(<p + (wtn,)ﬁ) + (1 — G,)wtnt> ] .

Therefore, the system of differential equations satisfied by n,, G,, }AL?, X; is defined by
(A7), (AB), (Al14), and (A15), with #¢'/9,, HY, gV, and w, given by (A20), (A22)

(A23), and (A24). The state variables are n, and G, and the control variables i’
and ;.

A3.2 Proof of Proposition 3A.—To prove Proposition 3A, we show that the sys-
tem described in Section A3.1 admits a steady state.

LEMMA A.1: The system of differential equations admits a steady state
(n*,G*,hA*,X*) withn* = 0,0 < G* < 1, and positive growth (g")* > 0 if

(A25) k(Y1 = k) /p)" o/t /vy < vH.

PROOF:

We look for a steady state with positive long-run growth ((g")* > 0) for the sys-
tem defined by (A7), (A18), (A14), and (A15) and denote such a (potential) steady
state n*,G*,izA*,X* (we denote all variables at steady state with a *). Following
(A7), we immediately get n* = 0. Using (A8), G* obeys

U(G*)R(ﬁ:*)ﬁ ‘
n(G*)R<ilA*) _l_gN*

(A26) G* =

We focus on a solution with G* > 0 (when # > 0, G* = 0 is also a solution);
(A26) implies that with (¢¥)* > 0,G* < 1.Then, with u € (0, 1), (A24) implies
that

B(1-0)

| ﬁHP* “ 1+3(0—1)
o= | T ey @]
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Using (A20), (A15) implies that in steady state,

(A27) it = ﬁ(m ((0— 1) +1)g™),

which uniquely defines 7** as an increasing function of g"* (recall that § > 1)
with 2%* > 0if g™ > 0. Then, for G* > 0, (A26) combined with (A27) defines
G* uniquely as an increasing function of g"*. Equation (A23) also uniquely
defines H* as a function of g™*:

N

(A28) H™ = H—%—— (1-G")i*.

Equations (A20) and (A26) allow us to rewrite (A14) in steady state as

% (G*)ﬁ;—l (ilA*)”
1—r

)/‘{Jrl

(A29) YHP = %(ﬁA*)2+nG5 (h*

Since G*, i"*, and H™* are functions of g™*, one can rewrite (A29) as an equation
determining g"V*. A steady state with positive growth-rate is a solution to

* 7 A% R K
(A30)  f(g") = 1;’”5;;* < L__ () +%> = 1,

with g™ > 0. Indeed, (A22) simply determines x * as
0 0
(1 — B) BT301-9) (Gpr) 1)

which achieves the characterization of a steady state for the system of differential
equations defined by (A7), (A8), (A14), and (A15).

To establish the sufficiency of equation (A25) for positive growth, note that
as gV — 0, then equations (A27), (A26), and (A28) imply that

10 = ey () )

In addition, (g"*/~) + (1 — G*) k" is always greater than (g"*/~), therefore for a
sufficiently large g"* (smaller than H), H"* is arbitrarily small, while for the
same value G* and h** are bounded below and above. This establishes that for gV
large enough, f(g"*) > 1. Therefore, a sufficient condition for the existence of at
least one steady state with positive growth and positive G* is that f(0) < 1 (such
thatf(g"*) = 1hasasolution), which is equivalent to condition (A25). The assump-
tion that & > 1 further ensures that the transversality condition always holds. B

oc—1

(A31) Y = (L)lld(leﬂ)

The steady state (n*,G*,h**,x*) corresponds to an asymptotic steady state
for our original system of differential equations (as N, — oo when n, — 0).
Since G, = G* € (0,1), g = g¥ > 0, and HY, = H"™ > 0, Proposition 2
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applies (which is also in line with the normalized variables being constant in steady
state). Online Appendix Section B5.4 provides further details on the behavior of the
economy close to the steady state.

A3.3 Proof of Proposition 3B.—Here we prove Proposition 3B. Combining (20)
and (19), we can write

Nt = (nncf<£”exp<_£7rudu>
(o))

Using (A6) and that aggregate profits I, = N,(G, 7% + (1 — G,)wV) areashare 1 /o
of output, we can rewrite this equation as

(A32) W = <mnt(j;OOexp<—j;Trudu)

A N A 1=r
— — kN Vv~

x | YHT T Ty Ao m P ar .
<¢ G (- Gyl F N,

Recalling (8), we can write

N | oo 1+<pwz;1>ﬂfl T N
ht = kN Gy YHF ( exp< gn - du)
i G U N et A

_1 = al exp(jf(gf, — gV ru)du>izf dr

Consider a fixed 7 > 0. For an arbitrarily large 7, if w;, is sufficiently small relative
to !, wy, remains small relative to ! over (0,7 + T). For any 7 € (0,7 + T),
(1+owi) =1
G(1+pwi ) +1

we have that = powi;' + o(pwi;").P8 Then forany r € (0,7),

(1) < wnGi| [Tont(uowis + oowiz") Jexp( [ (g7~ r)du)ar

00 (1+90w2;1)ﬂ—1 T N
+ |, . yHP - exp( gn =, du)dT .
\f[+T th(l—ngwzt_l)/ I 1 \ft ( )

38The notation o(z) denotes negligible relative to z (that is f(z) = o(z), if lim, o f(z)/z = 0), and O(z) will
denote of the same order or negligible in front of z (f(z) = O(z) if limsup, ,o|f(2)/z] < o).
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Further, r, = p+ 0gS with § > 1. In addition, C, = Y, — X,, with X, the
aggregate spending on machines (initially negligible and later on a share of output
bounded away from 1), and 7% initially grows like ¥, /N, (and from then on will
grow slower), therefore, r, — g;rN > p. Hence, one can write

A 1-k 7 ’i-‘rT o . ,-rN_r ’
(h?) = m7Gt<jz‘ '“waSDWLrlef’ (2" =r)de g

+o(pwiily) + o(e_”(”i_’))).

Since r, — g > p, then f[”TefrT(gZN_’“)d”dT < (1/p)(1 — e ?H+T-1) and we have

~ —K B P
)" < G (B0 e (vi) +ofwiss) ol 7))

Therefore, since T 'is large and ¢ w§ ! is small, then iz{‘ must be small too. In fact, we

get that k' = O((cpwi;‘jT)ﬁ) + o(e™T).
For any ¢ € (0,7), we can then rewrite (A15) as

(A33) % = WH —p— (0 —¢+1)g) + 0<(¢w;;+1T)H> +o(e ).

Next, (4) and the corresponding equation for high-skill labor demand in production
imply

€— —pl €— H
™ (1=G)(1+ewi) g B (1=G)(1+ewi)
. G, HA G,

Using these expressions in (5), and knowing that w;, = O(Y,/L) so that go% Y,/L
= O(p*wy,), we get

(A34) v, = (14 0(pwi) )N (mf)

One then gets that wages obey

(A35) wi = (1+0(owis")) 2511 — 5)1\7?@ (H?) 7
(A36) wy = (14 0(pwi ")) 2L angoot (m?)

Using (A21), weobtain C, = Y, — X, = (1 + O(G,ow$;'))Y,, then using the defi-
nition of ,, (A34) and (A35), we get
1-0)8

g =08
o= (1+ O(SOWZ?I))owL*B(Q*l)(Hf’)(liﬁ)QHN}”’”“"").
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Differentiating and plugging into (A33) and using (A23), we get (recalling (A36) so
that dIn(1 + O(pw{; ")) /dt will be of order O(ow§; ') as well)

1P
(1 —ﬁ)ew)Z—; = ol —p— (2= 1)y (H - )

1
+ 0f (puishn) ™) + ofe )

1
we dropped terms in pw{; ! since these are negligible in front of (¢ wZ;‘jT)E. The
exact counterpart of this system admits a BGP with H? constant without transitional
dynamics as in Romer (1990). Therefore, we have over the interval (0,7)

91 p
Pl i)+t 0
HP = (U_] — 74—0((@14/27%)17“)—i—o(e_”T)
Vgt )
and
Hiy) —p —1 = —pT
(A37) gV = ’YerO((cpw} 7) >+0(€ ).
p+i=ti a

which is positive under assumption (A25). With a low A%, (12) can be solved

as G, = wap(—%;) + 0((g0w;ﬁT)ﬁ) +o(eT). This characterizes
1

a
the solution over the interval (0,7) for wy, sufficiently small relative to . A
small wy, in return can be generated by a sufficiently small N, so that foranya > 0,
there is an N, low enough that the automation rate is lower than a. This establishes
Proposition 3B. B

A3.4 Proof of Proposition 3C.—We now prove Part C. The proof relies on two
lemmas proved in online Appendix B5.3.

LEMMA A.2: If k(1 — B) + & < 1 and gY has a positive limit, then G, cannot
converge toward zero.

This lemma shows that automation must take off at some point; the second lemma
1s more technical.

LEMMA A.3: If G, is bounded above zero, then fz? is bounded.

Under the assumptions of the Proposition, G, has a limit G, and gV a positive
limit g%¥. Then Lemma A.2 implies that G, > 0 and Lemma A.3 together with
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(A8) that G, < 1. Following Proposition 2, we then get that w;, = 0<N 7 ("')>
orw, = O(1). Therefore, we can rewrite the system as (A8),

) ~a)2 . .
it = iy (i - =)

K (l—m)fzt
K41 N

)1 -6 — gVit)

1 —r

%(nt—l (A
+

+0(m,),

X = Xt('yl;“fl?—p— (9¢—w+1)giv>+0(n,);

knowing that

%175 1 — 5 %(l—l) % G. ot v(G-1)
(A38) HY = (0—1)1 u(e )( /3)9/81 \0 X; z‘P) +0<n?>’

o

~A P
o v ¥

(as9) Tt =Ly o(nf),

and (A23). Using that gV and G, have limits in (A8) implies that 27 must also have

a limit. Using (A23), this implies that H” must also have a limit and therefore using

(A38) that x, must have a limit. In other words, the equilibrium path tends toward

the steady state (hA*, G*,x") with n, — 0 defined in Lemma A.1. ®

Ad4. Appendix to the Quantitative Exercise

This Appendix presents two exercises that complement Section III: a calibration
on the first 30 years of data and an analysis of the role played by the automation
externality. Online Appendix B11 contains additional details on the quantitative
exercise.

A4.1 Out-of-Sample Prediction.—We reproduce our calibration exercise but only
matching the first 30 years of data. reports the results, and gives
the new parameters. The model behaves very well out of sample. The predicted path
and parameters are close to those of the baseline case. The calibrated model over the
first 30 years slightly underestimates the pace of the rise of the skill premium. The big-
gest parameter difference is a lower elasticity of substitution between low-skill work-
ers and machines at 4.3 instead of 5.8. This decreases the incentive to automate, slows
the growth in the skill premium, and lowers the growth rate of equipment (panel D of
Figure Al).

A4.2 The Role of the Automation Externality.—To analyze the role played by
the automation externality, we recalibrate our model without it (i.e., we impose that

% = 0). Table A2|gives the resulting parameters, and reports the results.
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Panel A. Composition-adjusted college/ Panel B. Labor share of GDP
non-college weekly wage ratio
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FIGURE Al. PREDICTED AND EMPIRICAL TIME PATHS ONLY MATCHING THE FIRST 30 YEARS (until 1992)
TABLE A1—PARAMETERS (only matching the first 30 years)
Parameter o € o o4 R 0 n K
Value 5.80 4.34 0.60 0.43 0.55 1 0.40 0.66
Parameter p 53, A B4 @ Nige3 Gos3
Value 0.034 0.16 0.011 0.76 1.56 14.8 0.03
TABLE A2—PARAMETERS (when & = 0)
Parameter o € 5, ¥ R 0 n K
Value 4.95 495 0.66 0.51 0 1.15 0.30 0.87
Parameter p Ba A Ba ® Niges Gioes
Value 0.039 0.14 0.011 0.76 1.47 18.4 0.12

The model still reproduces the paths for the labor share, GDP/employment, and
equipment/GDP. Yet it does not capture the evolution of the skill premium. Indeed,
the fast rise in the skill premium in the 1980s and 1990s requires a fast increase in
automation, which, given the moderate decline in the labor share and the stable eco-
nomic growth, can only be brought about by a positive automation externality. The
data clearly favor a positive automation externality (even though the exact value of
k is not precisely estimated; see online Appendix Table B4).



220

Panel A. Values of N

90
80
70
60

-£- Exogenous technology
-©- Endogenous technology

Level
(6]
o

Years

AMERICAN ECONOMIC JOURNAL: MACROECONOMICS

JANUARY 2022

Panel B. Values of G
100
80 -

60

Percent

40

20

FIGURE A2. PATHS FOR N, AND G, IN THE ENDOGENOUS
AND EXOGENOUS GROWTH MODELS WITHOUT AUTOMATION EXTERNALITY

Panel A. Composition-adjusted college/
non-college weekly wage ratio

L2 224
g 2 A S
E 181
2 161
o 144 A Predicted values — ex.
s . -e- Predicted values — end.
= 124 - Empirical values
DB N 20N H N H O H O
C° P AP R QLSS
N M N N S S
Years

Panel C. GDP/employment

s %

o

I 200 =

8 150

(o]

— 100

x

(]

2 -4

= O 0 o B HS P
& P S

Years

Panel B. Labor share of GDP

80
75
70
65
60
55

Percent

S 5 N H O H» O

S &

@N@\@\@\&@qpqp
Years

Panel D. Equipment/GDP

% 3

2

(O]

=1 s

3

EO'5

2

>

o

Lu T T T T T T T T T T
O R o D H N H O PO
\gb »{'«3\ )9’\ \@b \qtb & \qfa (190 q/o S

Years

FIGURE A3. EMPIRICAL PATHS AND PREDICTED PATHS
FOR THE ENDOGENOUS AND EXOGENOUS TECHNOLOGY MODELS FOR /& = 0

Furthermore, we reproduce the exercise of Section IIIB without an automation
externality. We fix the parameters to their values in the recalibrated model with
% = 0 and look for the (exogenous) paths of N, and G, that minimize the distance

between the model and the data.

shows that with this set of parameters,

an exogenous technological model would indeed require a faster increase in G, to
better match the data than in the endogenous growth model: the path looks closer to
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that obtained in the endogenous model with & ## 0 than with & = 0. If anything, it
exhibits an even sharper increase in the 1980s and 1990s than in panel B of Figure 5.
Figure A3 shows that this exogenous growth model still matches the data well.
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