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Abstract

It is increasingly evident that the direction of technological change re-
sponds to economic incentives.We review the literature on directed techni-
cal change in the context of environmental economics and labor economics,
and we show that these fields have much in common both theoretically and
empirically. We emphasize the importance of a balanced growth path and
show that the lack of such a path is closely related to the slow development of
green technologies in environmental economics and to growing inequality in
labor economics.We discuss whether the direction of innovation is efficient.
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1. INTRODUCTION

Economists have long recognized that the direction of innovation responds to economic incen-
tives (Hicks 1932, Kennedy 1964).Whereas early models of endogenous growth, such as those by
Romer (1990) and Aghion & Howitt (1992), only featured one type of innovation, later models of
directed technical change (DTC) were quickly developed that included several types of innova-
tion. The earliest example is provided by Aghion &Howitt (1996), who model separately research
and development and analyze researchers’ incentives to allocate their efforts to each one of the
two.1 Closer to the questions posed by Hicks (1932) and Kennedy (1964), Acemoglu (1998) devel-
ops the canonical DTC model, in which innovation can augment either low- or high-skill labor.
Since then, the insights of DTC have been incorporated into several areas of economics, and here
we focus on two of them: environmental economics and labor economics.

Despite some differences between these two strands of literature, we show that they have much
in common both theoretically and empirically, as demonstrated by frequent cross-fertilization
between the two. On the theory side, we emphasize two aspects: First, we ask whether a given
model features a balanced growth path (BGP), that is, whether there exists an equilibrium path
in which relevant variables grow at equal rates. The lack of such a feature is closely related to the
slow development of green technologies in environmental economics and to rising inequality in
labor economics. Second, we discuss whether the direction of innovation is efficient: Are clean
research subsidies necessary to address climate change in the presence of carbon taxation? Is there
too much automation? Further, we show that there is overwhelming empirical evidence that the
direction of technology responds strongly to economic incentives in the environmental context,
and similar evidence is emerging in the labor context.

Section 2 briefly presents a version of the DTC models of Acemoglu (1998, 2002).
Section 3 shows how environmental economics has used this framework. Section 4 continues with
more recent DTC models that depart from the usual assumption of factor-augmenting technical
change to study automation. Finally, Section 5 presents empirical evidence.

2. THE CANONICAL DIRECTED TECHNICAL CHANGE MODEL

The last two decades of the twentieth century saw a concurrent increase in both the skill ratio
and the skill premium. A common explanation for this is that, because of skill-biased technical
change, the relative demand for skill outpaced the relative supply (Goldin&Katz 2008).Acemoglu
(1998) notes that this simultaneity is in need of an explanation and seeks to endogenize the rise in
skill demand as a technological response to the increase in the skill ratio. Acemoglu (1998, 2002)
describes two competitive markets for intermediate goods. These goods are combined using an
aggregate constant elasticity of substitution (CES) production function,

Y =
(
Y

ε−1
ε

L +Y
ε−1
ε

H

) ε
ε−1

, 1.

where ε > 0 is the elasticity of substitution between the two (we omit time subscripts when they are
not necessary). In the original setting, YL is an intermediate input produced using low-skill labor,
whereas YH is produced using high-skill labor. However, as we show below, this framework is well
suited for other applications. The intermediate inputs are each produced using a combination of
labor and a unique set of machines of mass 1. These machines are distinct for each sector, and

1In their model, research corresponds to the development of a new potential line of products, and development
corresponds to secondary innovations that introduce one of these products to the market.
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their productivity evolves endogenously. The level of technology of the most advanced machine,
the one employed in equilibrium, is denoted byAji > 0 for j� {L,H} and i� [0, 1].The production
functions for the two sectors are

YL = 1
1 − β

Lβ

L

∫ 1

0
Aβ

Lix
1−β

Li di and YH = 1
1 − β

Lβ

H

∫ 1

0
Aβ

Hix
1−β

Hi di, 2.

where Lj is the supply of workers of type j. Machines are produced monopolistically with 1 − β

units of the final good, which is the numeraire. With a demand elasticity of 1/β, the price of a
machine is 1.

Let pj denote the price of the intermediate goods.We can use the monopolist’s solution to find
that output for intermediate input j = L,H obeys

Yj = 1
1 − β

p(1−β )/β
j A jL j , 3.

where Aj ≡ ∫ 1
0 Ajidi is the aggregate technology in sector j. The profits of a monopolist are given

by

π ji = β p1/βj L jA ji. 4.

Combining the final good producer’s problem with labor market–clearing conditions gives the
skill premium

wH

wL
=

(
LH

LL

)− 1
σ

(
AH

AL

) σ−1
σ

, 5.

where σ � 1 + β(ε − 1) > 0 is the derived elasticity of substitution between L and H, and
σ > 1 if and only if ε > 1. This mirrors the framework of Goldin & Katz (2008) (building on
Katz & Murphy 1992). They focus on the college skill premium and reconcile the large rise in
college attainment with the substantial increase in the skill premium since the 1980s by arguing
that low-skill and high-skill workers are gross substitutes—i.e., σ > 1—and by inferring a posi-
tive secular trend in AH/AL. They take this trend in skill-biased technical change as exogenous,
whereas Acemoglu (1998) argues that when technology is endogenous, the growth in AH/AL can
be driven by the increase in the skill ratio, LH/LL.

To demonstrate this, we model innovation in a quality ladder fashion (Aghion & Howitt
1992). The literature generally models the cost of innovation in terms of the final good or of
a limited factor of production, that is, scientists (Acemoglu 2002). To facilitate comparison with
Section 3.1, we implement the latter case. Time is discrete, and the usual Ramsey setup gives the
interest rate rt. At the beginning of every period, scientists of mass S = 1 can work to innovate
either in the low-skill-intensive sector or in the high-skill-intensive sector.Given this choice, each
scientist is randomly allocated to one machine in their target sector without congestion (this can
be rationalized using within-sector spillovers).

Following Acemoglu (2002), the probabilities of successful innovation for scientists in the low-
skill and the high-skill sector are given by ηL(AHt/ALt)(1 − δ)/2 and ηH(ALt/AHt)(1 − δ)/2, respectively.2

δ is inversely related to the complementarity of technologies in the innovation functions. When

2Acemoglu (2002) has an expanding variety framework, and the probability of innovation for each scientist in
the low-skill sector obeys ηLN

(1+δ)/2
L N (1−δ)/2

H , where NL (NH) is the mass of low-skill (high-skill) products.
This formulation is equivalent to ours, since in the expanding variety model, profits for each firm are mechan-
ically diluted with the number of products: They are proportional to pLYL/NL in the expanding variety model
but to pLYL in the quality ladder model.
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δ = 1, the innovation possibility frontier is independent of the technology levels.When δ < 1, the
productivity of innovation declines with the level of technology in the same sector, but knowledge
spillovers from the other sector compensate for this in a way that permits a BGP. Once innova-
tion is complete, the scientist increases the quality of their targeted machine by a factor 1 + γ

and obtains monopoly rights until they are replaced by a future innovator. We impose the in-
consequential assumption that (1 + γ ) > (1 − β )

β−1
β , which ensures that the technological leader

charges the unconstrained monopoly price.
We focus on a BGP in which the two technologies grow at the same rate, and the probability ρ

that an incumbent is replaced by an entrant is constant and is the same in both sectors. Moreover,
the interest rate r and the profits for a given technology are also constant. Therefore the value of
a firm obeys

Vji = π ji(1 + r)
r + ρ

. 6.

Because scientists are randomly allocated within a sector, the expected technology obtained by
an innovator in sector j is given by (1 + γ )Aj(t − 1). Using Equation 4, Equation 6, and the BGP
condition that the two technologies grow at the same rate [such that ALt/AHt = AL(t − 1)/AH(t − 1)],
we obtain the relative value of innovating in the low-skill versus the high-skill sector, 
, as


t = ηL

ηH

(
AHt

ALt

)1−δ pLtYLt
pHtYHt

= ηL

ηH

(
pLt
pHt

) 1
β

︸ ︷︷ ︸
price effect

LL

LH︸︷︷︸
market size effect

(
ALt

AHt

)δ

︸ ︷︷ ︸
technology effects

.

The first equality emphasizes Kennedy’s (1964) finding that the relative incentive to innovate com-
bines the innovation possibility frontier and the relative factor shares (more specifically, interme-
diate input shares). The second equality emphasizes Acemoglu’s (2002) decomposition between a
price effect, a market size effect, and technology effects. Innovation has higher value in the sector
with the more expensive good and the larger labor market. Technology also directly increases the
value of innovation, but this effect is diminished by the presence of knowledge spillovers (when
δ < 1) across the two types of technology. Solving for the relative price pL/pH returns


t = ηL

ηH

(
LL

LH

) σ−1
σ

(
ALt

AHt

) δσ−1
σ

. 7.

Innovation can only occur in both sectors when 
 = 1. If δσ > 1, the relative incentive to innovate
in low-skill products is increasing in ALt/AHt, and a BGP is not stable. Therefore, except for knife-
edge cases, the economy eventually features innovation in only one sector. Intuitively, the sector
with a technological advantage commands a larger revenue share when the elasticity of substitution
σ is larger, and the knowledge spillovers are lower when δ is higher, both of which make a BGP
less likely.

In contrast, if δσ < 1, a stable BGP with innovation in both sectors is possible. Solving for
ALt/AHt and using the expression for the skill premium in Equation 5 we obtain, on a BGP,

wH

wL
=

(
ηH

ηL

) σ−1
1−σδ

(
LH

LL

) σ−2+δ
1−δσ

.

This replicates the strong induced-bias hypothesis of Acemoglu (1998): If σ > 2 − δ (and δσ < 1),
an increase in the skill ratio increases the skill premium. Intuitively, an increase in the skill ratio
leads to skill-biased technical change: An increase in LH/LL decreases 
, which pushes innovation
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toward the high-skill sector if and only if σ > 1 (see Equation 7), and a decline in AL/AH is high-
skill biased if and only if σ > 1 (see Equation 5). When the two inputs are sufficient substitutes
the technological response is sufficient to overturn the direct supply effect.3

Acemoglu (2003) uses an analogous framework to demonstrate that when capital is a repro-
ducible factor, and capital and labor are complements, innovation is labor augmenting.This endo-
genizes one of the assumptions underlying the Uzawa theorem (Uzawa 1961) and ensures stable
factor shares. An extensive literature has emerged building on the framework of Acemoglu (1998),
including work by Acemoglu & Zilibotti (2001) and Acemoglu et al. (2012b). In the following, we
focus on applications to environmental economics (Section 3) and on new DTC models that de-
part from factor-augmenting technologies (Section 4).4

3. DIRECTED TECHNICAL CHANGE AND THE ENVIRONMENT

While policy makers and climate scientists have long argued that overcoming the challenges of
climate change requires the development of clean technologies, the economics literature initially
focused on models with exogenous technological change (see, e.g., Nordhaus 1994).Meanwhile, a
growing empirical literature has shown that innovation responds to energy prices (see Section 5).
Several papers have added induced technical change to computable general equilibrium (CGE)
models; still, they do not build on modern growth theory and therefore either ignore knowledge
externalities or model them in an ad-hoc way. For instance, in work by Nordhaus (2002) and
Popp (2004, 2006), technological progress results from the accumulation of an R&D stock similar
to capital.5 Bovenberg & Smulders (1995, 1996) present the first model of modern endogenous
growth theory in an environmental context, but they only model one type of innovation.

We focus here on DTC models, which build on modern endogenous growth theory and fea-
ture two different types of innovations. In the environmental context, these models come in two
varieties. Some focus on energy-saving innovation and model either energy or a resource as an in-
put that is complementary to capital or labor (the first example is in Smulders & de Nooij 2003).
Other models analyze DTC between two substitute inputs, one of which is cleaner than the other
(Acemoglu et al. 2012).6 We start with the substitute case in Section 3.1, move to the complement
case in Section 3.2, and present further applications of the DTC framework in Section 3.3. Our
review is not exhaustive, and we focus primarily on recent work.7

3.1. The Substitute Case: Clean and Dirty Energy

Acemoglu et al. (2012) build on the framework of Section 2, but the two inputs differ in whether
they generate greenhouse gas emissions (the dirty input, Ydt) or not (the clean input,Yct). The two

3Acemoglu (2007) demonstrates that this result holds very generally in models with factor-augmenting tech-
nology. Loebbing (2021) demonstrates that an increase in the skill ratio increases the skill premium if and only
if the production function is quasi-convex once one takes into account the technology response.
4We focus onmodels of imperfect competition where profits drive innovation effort.There is a small literature
on DTCmodels with perfect competition, but these models are too different in their setup to be covered here
(see Irmen 2017, Irmen & Tabaković 2017, Casey & Horii 2019, and references therein).
5Readers are referred to Goulder & Schneider (1999), Sue Wing (2003), and Massetti et al. (2009). Gerlagh
& Lise (2005) and Grimaud & Rouge (2008) microfound innovation but still impose ad-hoc relationships
between its social and private values.
6Instead of building on Acemoglu’s (1998) DTC framework, Hart (2004) and Ricci (2007) present models in
which innovation either increases only the productivity of an intermediate or increases it by a lower amount
while making it cleaner.
7For other literature reviews, readers are referred to Popp et al. (2010) and Fischer & Heutel (2013).

www.annualreviews.org • Directed Technical Change 575
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inputs are assumed to be substitutes (ε > 1; see empirical evidence in Papageorgiou et al. 2017), so
that this framework can be used to analyze the choice between renewable (or nuclear) and fossil
fuel energy, or the choice between electric and fossil fuel vehicles.8 Production occurs as described
in Section 2, except that the labor allocation between the two sectors is endogenous.

CO2 emissions are directly proportional to the use of the dirty input. Implicitly, using the dirty
input requires consuming a freely available fossil fuel with a Leontief technology. As a result, Ace-
moglu et al. (2012) do not model improvements in the energy efficiency or resource productivity
(i.e., thermal efficiency) of power plants or fossil fuel vehicles, but they rather focus on other
innovations that reduce their effective costs.9

Innovation is modeled as in the previous section, except that patents only last for one period
and δ = 1, so that the innovation possibility frontier is independent of the technology levels.10

The law of motion of input j � {c, d} technology is

Ajt = (
1 + γ η j s jt

)
Ajt−1,

where sjt is the mass of scientists in sector j, ηj is their productivity, and γ is the innovation size.
This innovation setup features a building-on-the-shoulders-of-giants externality, since innova-
tors not only improve the current technology but also enable future innovators to build on their
innovations.

As profits still obey Equation 4, the expected profits of a scientist working for sector j are given
by

Π jt = η j (1 + γ )β p
1
β

jt L jtA j(t−1) = η jβ p jtYjt
1 + γ η j s jt

.

Scientists target the sector with the highest expected profits, which is the clean sector if the
following ratio is greater than 1:

Πct

Πdt
= ηc (1 + γ ηdsdt )

ηd (1 + γ ηcsct )
pctYct
pdtYdt

= ηc

ηd

(
pct
pdt

) 1
β

︸ ︷︷ ︸
price effect

Lct

Ldt︸︷︷︸
market size effect

Act−1

Adt−1︸ ︷︷ ︸
direct productivity effect

. 8.

Therefore, scientists target the sector with the largest revenue (adjusted with the productivity
of the innovation technology). Relative revenues depend on the same forces as above. Yet, there
are no cross-sectoral knowledge spillovers and the labor allocation is now endogenous, with the
more advanced sector attracting relatively more labor when the inputs are substitute.

We can then express the relative expected profits from innovation as

Πct

Πdt
= ηc

ηd

(
1 + γ ηcsct
1 + γ ηdsdt

)σ−2 (
Act−1

Adt−1

)σ−1

. 9.

When the two inputs are substitutes, the price effect is weaker and innovation tends to be directed
toward the most advanced sector: It exhibits path dependence, which is the first lesson of the

8Aghion & Howitt (2009, chapter 16) preempt some of the results of Acemoglu et al. (2012) in the case of
perfect substitutes.
9Such innovation could be included if pollution were proportional to the use of dirty machines, or xdit [similar
to Gans’s (2012) model]. This would not change any of the following results.
10The supply of R&D resources is fixed, so that clean R&D fully crowds out dirty R&D. This is not an
innocuous assumption, as a policy that aims at increasing clean innovation also depresses dirty innovation and
output growth (see Popp 2004).
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framework.11 In fact, this is a so-called bang-bang solution, and for a sufficiently low ratio Ac0/Ad0,
all innovation at time 1 occurs in the dirty sector.Act/Adt further declines and innovation remains
locked in dirty technologies. Intuitively, we should not expect much clean innovation in a laissez-
faire equilibrium, because an innovation that aims at improving a component in a solar panel
would have a much smaller market than an innovation aimed at improving a component in a fossil
fuel power plant. Therefore, whereas the canonical model of Section 2 focuses on a BGP, we focus
here on unbalanced trajectories.12

As a result, when fossil fuel technologies are initially ahead, the production of dirty inputs in
the laissez-faire equilibrium grows without bound, and so do CO2 emissions. To prevent this, a
social planner could implement a carbon tax or research subsidies for clean innovation. A carbon
tax imposes a wedge between the producer price of the dirty input and its marginal product in the
final good production, and it decreases the producer price pdt for given technologies in Equation 8.
A clean research subsidy directly multiplies the right-hand side of Equation 8.13 With a sufficiently
strong policy intervention, the social planner can redirect innovation away from dirty technolo-
gies and toward clean ones. If this intervention is maintained for a sufficiently long time, clean
technologies will catch up, and market forces will favor clean innovation. When the two inputs
are sufficient substitutes (ε > 1/β), a temporary intervention is enough to ensure that emissions
will decline in the long run. This intervention, however, has the cost of lower productivity growth
during the catch-up phase while innovation is improving the less productive input. Yet, the longer
the social planner waits, the larger the gap between clean and dirty technologies before the inter-
vention, and the longer the intervention and the larger the costs. This is the second lesson from
the framework: Taking endogenous technical change into account calls for earlier intervention.
Gerglagh et al. (2009) similarly find that endogenous innovation in abatement technology calls
for a front-loaded policy.

Finally, Acemoglu et al. (2012) study the optimal policy when the representative agent values
consumption and is hurt by environmental degradation. They show that this policy can be decen-
tralized using a Pigovian carbon tax and research subsidies to clean innovation (plus a subsidy to
remove the monopoly distortion). This is the third lesson from the framework: A carbon tax is
not enough to obtain the first best. In the optimum, innovation is allocated to the sector with the
highest social value. The ratio of social values can be expressed as

SVct

SVdt
= ηc (1 + γ ηdsdt )

∑
τ≥tλt,τ p

1
β
cτLcτAcτ

ηd (1 + γ ηcsct )
∑

τ≥tλt,τ p
1
β

dτLdτAdτ

, 10.

where λt, τ is the discount factor between t and τ . This ratio reflects the environmental value,
as a higher carbon tax decreases pdτ . However, even with a carbon tax, the market still allocates
innovation according to the ratio of Equation 8, and in general it will not implement the first best
without a research subsidy. Intuitively, the social planner allocates innovation according to the
discounted benefits that a higher technology brings in every period, while the market only cares
about immediate profits.

11For more discussion on path dependence, readers are referred to the review by Aghion et al. (2019a).
12With cross-sectoral knowledge spillovers, as in the innovation function of Section 2 where scientists’ pro-
ductivity obeys ηj(A( − j)t/Ajt)(1 − δ)/2, there is still path dependence when σ > 2 − δ. The difference with the
threshold σ > 1/δ given above comes from the endogeneity of the labor allocation.
13That is, Equation 9 becomes Πct

Πdt
= (1 + qt ) (1 + τt )ε ηc

ηd

(
1+γ ηcsct
1+γ ηdsdt

)σ−2 (
Act−1
Adt−1

)σ−1
, where qt is a clean re-

search subsidy and τ t is an (ad valorem) carbon tax.
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This intuition extends to the case of patents lasting more than one period, or of patents lasting
until the following innovation [as mentioned by Acemoglu et al. (2012); see also Greaker et al.
2018]. Moreover, the private value does not internalize the building-on-the-shoulders-of-giants
externality.To see this, consider an extreme case with perpetual patents, such that future innovators
would have to pay royalties to the incumbents to compensate them for their profit losses once the
new technologies have arrived. In that setup, the ratio of private values of innovation would obey

Π ct

Πdt
= ηc (1 + γ ηdsdt )

∑
τ≥tλt,τ p

1
β
cτLcτAct

ηd (1 + γ ηcsct )
∑

τ≥tλt,τ p
1
β

dτLdτAdt

. 11.

In this setting, only the building-on-the-shoulders-of-giants externality is active. The only differ-
ence between Equations 10 and 11 is that the sum in Equation 11 only considers the expected
technology of the current innovation Ajt, whereas the sum in Equation 10 considers the full path
of expected future technologies Ajτ . This corresponds directly to the building-on-the-shoulders-
of-giants externality: An innovator improves not only current technology but also all future tech-
nologies, since innovators build on each other’s work.14 Therefore, finite-lived patents, creative
destruction, imitation, and the building-on-the-shoulders-of-giants externality all imply that the
private value of an innovation tends to be more short-sighted than its social value. The key is
that this short-termism does not affect clean and dirty technologies equally. Consider a setting
in which dirty technologies are initially more advanced, but the clean technologies must domi-
nate in the future in the social planner’s allocation. A larger fraction of the social value of dirty
innovation is realized in the short run than is the case for clean innovation. In other words, a high
share of the social value from improving a solar panel today comes from the benefits of getting
better solar panels in the future, while most of the benefits from improving coal power plants are
realized today. Then, the short-termism in the market innovation allocation implies inefficiently
low clean innovation relative to dirty innovation, even with Pigovian taxation.15

To summarize, Acemoglu et al. (2012) provide three lessons. First, there is path dependence in
the development of clean versus dirty technologies. Second, taking into account the endogeneity
of innovation calls for earlier action. Third, in addition to Pigovian carbon taxation, the optimal
policy includes research subsidies specifically devoted to clean innovation.

Acemoglu et al. (2016) further build on Acemoglu et al.’s (2012) work by calibrating a firm
dynamics model with clean and dirty innovation. A final good is produced as a Cobb–Douglas
aggregate of intermediates. Each intermediate can be produced with a clean or a dirty technology;
the two evolve on their own ladder and are perfect substitutes within a line. A firm is a collection
of leading clean or dirty technologies in different lines. Innovation can be incremental, building
on each technology separately, or radical, building on the leading technology whether it is clean
or dirty. As a result, their model features cross-sectoral spillovers that were absent in Acemoglu
et al.’s (2012) model and mitigate (without eliminating) path dependence in innovation. As in the
new DTCmodels of Section 4, technical change in each line is microfounded (similar to the tasks
below) instead of immediately taking a factor-augmenting form at the aggregate level. Acemoglu
et al. (2016) calibrate their model to the US energy sector. Their conclusions are in line with those

14In contrast, the optimal policy in a model with horizontal innovation and DTC need not feature research
subsidies in addition to Pigovian taxation.
15Gerlagh et al. (2014) make a related point in a model with clean innovation only. This contrasts with an
earlier literature of integrated assessment models with a constant ratio of social to private value of innovation
(Nordhaus 2002; Popp 2004, 2006; Gerlagh & Lise 2005).
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of Acemoglu et al. (2012): The optimal policy requires both (large) clean research subsidies and a
carbon tax, and it features a rapid switch from dirty to clean innovation.

3.2. The Complementarity Case: Energy-Saving Innovation

Whereas Acemoglu et al. (2012) focus on the development of clean substitutes to dirty inputs,
others have focused on energy- or resource-saving innovations. In our framework, the final good
is produced according to Equation 1, but the two inputs YL and YH are replaced by a production
input YP and an energy-services input YE, with ϵ < 1. Both inputs are produced as in Equation 2,
but with a capital-labor aggregate instead of low-skill labor for YP and energy (or a fossil fuel re-
source) E for YE. The papers differ in whether there is a fixed resource flow (Smulders & de Nooij
2003), a constant resource price (Shanker & Stern 2018), or an exhaustible resource stock (André
& Smulders 2014, Hassler et al. 2019). This literature seeks to account for stylized facts regarding
energy consumption and growth.

In particular,Hassler et al. (2019) build a quantitative macroeconomic model.They estimate an
elasticity of substitution between energy and other inputs close to 0 and show that energy-saving
technical change took off in the 1970s with the oil shocks, in line with the DTC theory. Their
model further predicts that thanks to the innovation response, resource scarcity will only lead to a
slight increase in the energy share.One of their conclusions is that “subsidies may not be necessary
for regulating the direction of technical change.” Why are their conclusions so different from
Acemoglu et al.’s (2012)? This is because energy is a complement to other inputs, and consequently
a BGP arises more easily.

Within the framework we have sketched and with one-period patents, the relative expected
profits from labor-augmenting over energy-augmenting innovation obey

ΠPt

ΠEt
= ηP (1 + γ ηEsEt )

ηE (1 + γ ηPsPt )
pPtYPt
pEtYEt

= ηP

ηE

(
pPt
pEt

) 1
β L
E
APt−1

AEt−1
= ηP (1 + γ ηEsEt )

ηE (1 + γ ηPsPt )

(
LAPt

EAEt

) σ−1
σ

. 12.

Since the two inputs are complementary, the price effect dominates. When the resource flow is
constant (as in Smulders & de Nooij 2003), innovation tends to favor the least advanced sector
(following the last expression in Equation 12), and in the long run, the economy converges to a
BGP with innovation in both sectors (ΠPt = ΠEt), equal growth in the two sectors, and constant
factor shares (following the first equality in Equation 12). When the resource flow decreases (be-
cause of resource exhaustion or a growing carbon tax), the resulting increase in the energy share
favors energy-saving technical change (following again the last expression in Equation 12).16 Here
as well, the economy converges in the long run toward a BGP that has a constant interior energy
share but in which energy-saving technical change AEt grows faster than labor-saving technical
change APt to compensate for the reduction in the resource flow. This follows the same logic pro-
posed by Acemoglu (2003), in which labor scarcity leads to labor-augmenting technical change.
With a constant resource price, the logic is reversed and innovation in the long run is entirely
labor augmenting.

The social planner solution also features balanced growth and converges toward the same in-
novation allocation as in the equilibrium, provided that energy is optimally priced through a car-
bon tax. Research subsidies may be necessary in the transition, but their importance is greatly
reduced—Hassler et al. (2019) show a case in which they are not necessary in the transition either
(see also Hart 2008). The short-termism of the market innovation allocation now favors the least

16A tax on energy, E, moves innovation toward AE when ε < 1; a tax on energy services YE moves innovation
toward AP regardless of the value of ε.
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advanced technology, adjusting for resource availability, which ensures that the economy moves
toward a BGP, as called for by the social planner. While public intervention is crucial to the de-
velopment of clean alternatives to fossil fuel energy, carbon pricing can do the heavy lifting for
the development of energy-saving technologies.17

A consequence of DTC is that while the short-run elasticity between energy and other inputs
is very low, the long-run energy share is constant. One may be tempted to conclude that climate
models are not missing much by ignoring energy-saving technical change and simply assuming
that energy enters final good production in a Cobb–Douglas way. Casey (2019), however, shows
that this would be misguided. He builds a model similar to the one by Hassler et al. (2019), in
which energy and the capital-labor aggregate are combined in a Leontief production function
for given technologies, but the long-run elasticity is 1 for the same reason as above. He calibrates
both his DTCmodel and a Cobb–Douglas economy to US data, and he shows that a given carbon
tax is less effective at reducing cumulative emissions in the DTCmodel. Intuitively, technological
adjustment is sluggish and with a Leontief production function, emissions do not decline as rapidly
as in a Cobb–Douglas setting. Because climate damages depend on the stock of emissions, this
transition period matters quantitatively.

3.3. Applying Directed Technical Change to Environmental Questions

In the following, we review papers that use these two DTC frameworks in the context of energy
shocks, historical energy transitions, and carbon leakage.

3.3.1. Energy market shocks. Fried (2018) uses the oil shocks of the 1970s to calibrate a DTC
model that combines elements of both Acemoglu et al.’s (2012) and Hassler et al.’s (2019) models
but features a more detailed representation of the economy. A final good is produced with a pro-
duction input and energy services; the latter are themselves an aggregate of local fossil fuel energy,
oil imports, and green energy. The production input and energy services are highly complemen-
tary, while the different types of energy are substitutes. Innovation can be targeted at local fossil
fuel energy, green energy, or the production input. As in Acemoglu et al.’s (2012) model, emissions
are proportional to the quantity of fossil fuel energy. Fried (2018) studies the implementation of a
carbon tax, which cuts emissions by 30% in 20 years. Such a carbon tax redirects innovation away
from fossil fuel energy toward mostly green energy.DTC reduces the size of the necessary carbon
tax by 19.2% compared to a model with exogenous technical change.18

Acemoglu et al. (2019) build on Acemoglu et al.’s (2012) model to study the shale gas boom,
which started in 2009. They show that since then, the ratio of renewable patents relative to fossil
fuel patents in the electricity sector has declined sharply. To analyze the consequences on emis-
sions, they build a DTC model in which electricity can be green or can be produced with coal or
natural gas. Innovation can be targeted at improving the productivity of fossil fuel power plants or
green power plants. Following a drop in natural gas prices (as the one deriving from the shale gas
boom), electricity production shifts toward natural gas. Because natural gas is much cleaner than
coal, emissions decrease in the short run. However, the price decline also increases the market for
innovations in fossil fuel power plants, and as a result green innovation declines. Calibrating their

17This conclusion may not hold in the presence of multiple equilibria, as shown by van der Meijden &
Smulders (2017).
18Hart (2019) also calibrates an integrated assessment model with features à la Acemoglu et al. (2012). The
optimal policy includes both a carbon tax and clean research subsidies, but the relative importance of research
subsidies is diminished, particularly because of intersectoral knowledge spillovers.
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model to the US electricity sector, Acemoglu et al. (2019) find that this innovation effect even-
tually dominates, so that emissions increase in the medium term following the shale gas boom.
They argue that policy makers should react to the shale gas boom by raising subsidies to green
innovation.19

3.3.2. Historical energy transitions. DTC can also be used to explain historical energy transi-
tions. Stern et al. (2020) build on Acemoglu’s (2002) model to explain the Industrial Revolution as
resulting from the transition from a wood-powered to a coal-powered economy. In their model,
the final good is produced with two substitute intermediate inputs, one wood intensive and the
other coal intensive. Innovation may be directed at either. Wood is in fixed supply each period,
whereas coal is supplied at a fixed extraction cost. Constant long-run growth is only possible in
a coal-based economy, and their model can generate transitional dynamics akin to those of the
British Industrial Revolution: Initially, the economy relies mostly on wood and grows slowly, but
with economic development it progressively shifts toward coal, which spurs innovation in coal
technologies through a market size effect. This leads to a takeoff in economic growth.20

Lemoine (2018) builds a DTC model in which different energy services are produced using
two complementary inputs, machines and natural resources (as in Acemoglu et al. 2019), and in
which natural resources are isoelastically supplied. Even though the model generates endogenous
energy transitions, a calibration shows that the optimal climate policy still relies on clean research
subsidies to accelerate the transition to renewables.

3.3.3. Carbon leakage. Themodels we have studied so far all consider either a country in isola-
tion or a global solution. In practice, international climate negotiations have stalled, and countries
have largely conducted climate policy unilaterally. International trade, however, may reduce the
scope for unilateral actions as it may lead to carbon leakage (i.e., a move of the production of
polluting goods from regulated to unregulated countries). The DTC literature shows that the
elasticity of substitution between traded goods and the pattern of innovation/imitation across
countries play a crucial role in determining carbon leakage. Di Maria & Smulders (2005) consider
a two-country (North, South), two-good (energy-intensive, non-energy-intensive) trade model in
which theNorth innovates while the South imitates exogenously.The implementation of a carbon
tax in the North and the ensuing reallocation of energy-intensive production to the South leads to
an increase in innovation in the non-energy-intensive sector. This reduces carbon leakage when
the goods are substitutes and amplifies it when they are complements (because innovation in the
energy-intensive sector is resource augmenting, and it is therefore resource saving in the comple-
mentary case). Di Maria & Valente (2008) start from the same setup but allow both countries to
innovate on a global market. They find that carbon leakage is always reduced by the innovation
response to a unilateral cut in emission. Acemoglu et al. (2014) and van den Bijgaart (2017) fo-
cus on endogenous imitation or innovation by the South (the unregulated country) by extending

19In a similar spirit, Acemoglu & Rafey (2019) look at the effect of an exogenous shock to geoengineering
technology. They find that when environmental policy is endogenous and commitment is impossible, such
a shock may decrease clean innovation, as it reduces future environmental taxes. Progress in geoengineering
technology may then backfire, leading to an increase in emissions.
20Similarly, Gars & Olovsson (2019) build a DTC model to explain the nineteenth-century Great Diver-
gence. In their model, a switch from wood-powered to fossil fuel–powered innovation leads to faster eco-
nomic growth. However, when one country switches to fossil fuels, the world price of the latter increases,
which reduces innovation in fossil fuel technologies elsewhere.
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Acemoglu et al.’s (2012) model to a two-country setup. In both cases, the technological response
by the South following a unilateral carbon tax by the North amplifies carbon leakage.

Hémous (2016) analyzes which unilateral policy can be successful with endogenous innova-
tion. He also considers a two-country, two-good (energy-intensive, non-energy-intensive) trade
model in which there is unit elasticity between the two goods, but the energy-intensive good
can be produced in a clean or a dirty way (as in Acemoglu et al. 2012). In each country, innova-
tion can be targeted at the non-energy-intensive sector or, within the energy-intensive sector, at
clean or dirty technologies. The innovation response from the unregulated country amplifies
carbon leakage: The implementation of a unilateral carbon tax displaces the production of the
energy-intensive good toward the unregulated country, which increases dirty innovation in that
sector when the dirty technology is more advanced than the clean one. A unilateral carbon tax may
then backfire and lead to an increase in global emissions. Instead, a green industrial policy, con-
sisting of green research subsidies and possibly carbon tariffs, can reduce emissions in both coun-
tries by directing innovation within the regulated country toward the clean sector and innovation
in the unregulated country toward the non-energy-intensive sector and (with strong knowledge
spillovers) toward clean energy. Overall, trade acts as a double-edged sword: Unilateral carbon
taxes are less effective, but an appropriate policy can decrease emissions globally.21

3.3.4. Other applications and future research. DTC theory often provides policy answers
that differ from those of models with exogenous technology, and it accounts well for historical
trends. This calls for further integrating DTC in climate change economics. In particular, micro-
foundedDTC should be more systematically incorporated in integrated assessment models.Dietz
& Lanz (2019) offer a recent example in a detailed multisectoral model with endogenous popu-
lation dynamics. Kruse-Andersen (2020) also includes population dynamics into a DTC model.
Another important avenue for future research is the expansion of the two-country setups discussed
above into more realistic models of international environmental agreements, building on game-
theoretic contributions such as those by Barrett (2006) and Harstad et al. (2019). Finally, climate
change is a problem riddled with uncertainties about climate dynamics and climate damages but
also technological prospects. The models reviewed here are all deterministic, but the interaction
between technology and uncertainty is a promising avenue for future research.22

4. AUTOMATION AND NEW DIRECTED TECHNICAL CHANGE
MODELS

We have argued that the canonical DTCmodel has provided insights for the study of both income
inequality and environmental issues. Nevertheless, a few papers have criticized this framework
for being too imprecise in describing the effects of technology on work. Among these, Autor
et al. (2003) postulate a “routinization hypothesis” by introducing the notion of tasks, that is,
the work inputs required for producing a given output. They argue that because computers are

21Witajewski-Baltvilks & Fischer (2019) also build on Acemoglu et al.’s (2012) work, but they include trade
in machines, so that innovation incentives reflect market conditions in both countries. A unilateral clean re-
search subsidy can redirect innovation toward clean technologies in both countries if the regulated country is
large enough.Moreover, it may induce the government of the unregulated country to introduce its own clean
research subsidy, as long-run growth is higher when the two countries innovate in the same sector.
22Readers are also referred to Heutel et al. (2018), who show that geoengineering can be used as an insurance
mechanism against climate uncertainty.
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highly capable of performing tasks that can be codified in a computer program—labeled routine
tasks—they are disproportionately substitutable for workers performing such tasks. Specifically,
they model output in an industry i as

y(i) = (lR(i) + x(i))βi l1−βi
N (i), 13.

where lR denotes the input of routine labor, lN the input of nonroutine labor, x the use of computer
capital, and β i � (0, 1) the importance of routine tasks in a given industry. Autor et al. (2003) also
formalize technical progress as the continuously declining price of computer capital. When both
computer capital and routine labor are employed, Equation 13 implies that low-skill wages equal
the price of computer capital and decline correspondingly. Autor and colleagues show empirically
that the implementation of computer capital correlates strongly with changes in the use of routine
tasks across industries.

Acemoglu & Autor (2011) argue that the canonical model based on factor-augmenting techni-
cal change cannot account for several features of the evolution of the income distribution. These
include a continuous increase in labor income inequality and absolute declines in low-skill wages
(see also Acemoglu & Restrepo 2020c). Furthermore, the canonical model does not microfound
automation as the replacement of workers with machines in the execution of certain tasks. To do
so, they extend Autor et al.’s (2003) model with exogenous technology and endogenous assignment
of skills to tasks.

Although Habakkuk (1962) had already postulated that labor scarcity encouraged innovation
in the United States, Zeira (1998) has been the first to model automation in a growth model. Out-
put is produced as an aggregate of intermediates, each of which can be produced with either a
manual technology or a more capital-intensive automated technology. Exogenous technological
progress in total factor productivity (TFP) raises the wage so that a growing number of interme-
diate producers adopt the industrial technology over time. Zeira (1998) then focuses on the role of
automation in amplifying productivity differences across countries. Acemoglu (2010) shows that
Habbakuk’s (1962) hypothesis only holds if innovation is labor saving. Peretto & Seater (2013)
build a dynamic model in which innovation in automation changes the exponent of an aggre-
gate Cobb–Douglas production function. Yet, none of these papers features DTC because they
all consider only one type of innovation.

4.1. Automation and Nonbalanced Growth

A recent literature, starting with Hémous & Olsen (2021), has explicitly built task models into
DTC frameworks. Hémous & Olsen’s (2021) model endogenizes several aspects of the automa-
tion process described by Zeira (1998) and provides some answers to Acemoglu & Autor’s (2011)
critique of the DTC literature. Hémous & Olsen (2021) build on the expanding variety model
(Romer 1990) and consider an economy in which a final good is produced as a CES aggregate of
a mass N of products. This can be written as

Y =
(∫ N

0
y(i)

σ−1
σ

) σ
σ−1

,

with σ > 1 and with y(i) being the use of product i. Each product is produced monopolistically
using a generalization of Equation 13,

y(i) =
(
l (i)

ε−1
ε + α(i)x(i)

ε−1
ε

) εβ
ε−1 h(i)1−β , 14.

where l(i) denotes low-skill workers and h(i) denotes high-skill workers. These labor inputs corre-
spond to different tasks, so that each product comes with its own tasks. Automation occurs when
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machines can be used to (partly) substitute for low-skill labor in a task and α(i) switches from 0
to 1. In the baseline model, machines are produced one-for-one with the final good.23 Technol-
ogy is characterized by both the number of products,Nt, and the share of automated products (or
low-skill tasks), Gt. Automation is therefore a secondary innovation that occurs in product lines
developed through horizontal innovation. This makes Hémous & Olsen (2021) closer in spirit to
Aghion & Howitt (1996).

Aggregate output can be represented as

Y = N
1

σ−1

⎛
⎜⎝{1 −G} 1

σ

{
(LN)β (HP,N)1−β︸ ︷︷ ︸

}
T1

σ−1
σ

+G
1
σ

{
[(LA )

ε−1
ε + (X )

ε−1
ε ]

εβ
ε−1 (HP,A )1−β︸ ︷︷ ︸

} σ−1
σ

T2

⎞
⎟⎠

σ
σ−1

,

15.
where LA (LN) denotes the total mass of low-skill workers in automated (nonautomated) firms,
HP, A (HP, N) denotes the total mass of high-skill workers hired in production in automated (nonau-
tomated) firms, and X = ∫ N

0 x(i)di denotes the total use of machines. The first term, T1, captures
the case in which production is nonautomated. The second term, T2, represents the factors used
within automated products and features substitutability between low-skill labor and machines.
Equation 15 shows that G is not a factor-augmenting technology but rather the share parameter
of the automated products nest.N

1
σ−1 plays the role of a TFP parameter.

Hémous &Olsen (2021) assume that μ = β(σ − 1)/(ϵ− 1) < 1, which ensures that automation
is low-skill-labor saving at the firm level.24 Yet, this does not necessarily imply that automation
is low-skill-labor saving for the aggregate economy. For given N and G, the static equilibrium
can be described as the intersection of two equations, illustrated in Figure 1, in which wL and
wH denote the wages of low- and high-skill workers, respectively. The unit isocost curve repre-
sents the cost of producing one unit of final good and is a downward sloping curve in the (wL,
wH) space. The relative demand curve is upward sloping.25 When there is no automation (G =
0), the aggregate economy inherits the Cobb–Douglas structure and the relative demand curve is
linear. With G > 0, the curve bends upwards: Automated firms can substitute more toward ma-
chines, and nonautomated firms lose market size when wL rises. An increase in automation pivots
this curve counterclockwise, which reduces low-skill wages, a negative aggregate substitution ef-
fect. It also increases the productive capabilities of the economy, which pushes the isocost curve
toward the upper right, a positive aggregate scale effect. Consequently, while high-skill wages
and the skill premium are always increasing in G, the effect on low-skill wages is ambiguous. In
particular, for low G, the aggregate scale effect dominates and low-skill wages rise in G, but for
higher levels of automation, the effect is negative (an analogous point is made informally in Autor
2014).Horizontal innovation, an inflow of nonautomated products, raises both low- and high-skill
wages and, for high-enough N, lowers the skill premium. Figure 1 illustrates a central feature of
Hémous & Olsen’s (2021) model. For any path of technology [Nt ,Gt ]∞t=0 ∈ (0,R+) × (0, 1), where
limt → ∞Nt = ∞ and Gt has a strictly positive limit, low-skill wages must grow at a positive but

23In contrast to Autor et al.’s (2003) model, in this case the price of an existing machine is fixed, but there is
technological progress insofar as machines can be used in a growing number of tasks.
24Automation both lowers the cost of production, which increases demand for low-skill labor, and allows for
substitution with machines, which lowers it. The latter effect dominates when μ < 1.

25The unit isocost is given by
σN

1
1−σ

(
G(1+w1−ε

L )μ+(1−G)wβ (1−σ )
L

) 1
1−σ w

1−β

H
(σ−1)ββ (1−β )1−β = 1, and the relative demand curve is

given by wHH
wLL

= 1−β
β

G(1+wε−1
L )μ+(1−G)

G(1+wε−1
L )μ−1+(1−G)

.
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Figure 1

The static equilibrium in Hémous & Olsen’s (2021) model. In the graph, wH denotes the high-skill wage, wL
the low-skill wage,N the number of products,G the share of automated products, L the number of low-skill
workers,HP the number of high-skill workers in production, and 1 − β the factor share of high-skill labor in
production. An increase in the number of products raises both wages and the skill premium when G > 0. An
increase in the share of automated products increases high-skill wages and the skill premium but has an
ambiguous effect on low-skill wages. Figure adapted with permission from Hémous & Olsen (2021);
copyright 2021 American Economic Association.

lower rate than high-skill wages. This will make a BGP with equal growth in low- and high-skill
wages impossible.

Hémous & Olsen (2021) endogenize both Nt and Gt. Horizontal innovation uses high-skill
workers; that is, Ṅt = γNtHD

t . Moreover, a monopolist of a nonautomated firm can hire high-
skill workers, hAt , to automate the firm’s production technology with Poisson rate ηGκ̃

t

(
NhAt

)κ ,
where κ � (0, 1) controls the curvature of the innovation function and κ̃ ∈ [0, κ] parameterizes a
knowledge externality in automation innovation. This gives the law of motion

Ġt = ηGκ̄
t (h

A
t Nt )κ (1 −Gt ) −GtgNt , 16.

where gNt = Ṅt/Nt . Equation 16 has strong similarities with a capital accumulation function, and
the stock of automated tasks can be seen analogously: Automation of existing tasks accumulates
automation stock, and the inflow of (not-yet-)automated tasks depreciates the existing automation
stock. Both of these innovation processes respond to economic incentives. The resulting state of
technology, (Nt,Gt), then determines wages in the economy.

LetV A
t andV N

t denote the value functions of automated and nonautomated firms, respectively.
Nonautomated firms employ high-skill workers to automate the production process, implying the
following first-order condition for automation innovation:

ηκGκ̃
t

(
NthAt

)κ−1 (
V A
t −V N

t

) = wHt/Nt . 17.

The number of automation innovations therefore depends on the ratio between the increase in
firm value associated with automation and its effective cost, or

V A
t −V N

t

wHt/Nt
∝̃ πA

t − πN
t

GtπA
t + (1 −Gt )πN

t
= 1 − (

1 + wε−1
Lt

)−μ

Gt + (1 −Gt )
(
1 + wε−1

Lt

)−μ
, 18.

where ∝̃ means approximately proportional and πA
t and πN

t are the profits of automated and
nonautomated firms. Intuitively, with a positive discount rate,V A

t −V N
t moves with πA

t − πN
t to
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a first approximation. Furthermore, since both aggregate profits and high-skill labor compensa-
tions are proportional to output,wHt/Nt is proportional to average profits. The second half of the
equation follows from πN

t /πA
t = (1 + wε−1

L )−μ. This highlights low-skill wages as the key deter-
minant of automation innovations. When wLt ≈ 0, there is little advantage to being automated
and πA

t ≈ πN
t , which implies little automation innovation. When wLt → ∞, the right-hand side

of Equation 18 approaches a constant and, with it, the share of innovation in automation tech-
nologies. In contrast to the classic DTC model with factor-augmenting technical change, in this
model the direction of technical change is entirely determined by a price effect with no market
size effect (as in Acemoglu & Restrepo 2018, discussed below). Intuitively, horizontal innovation
and automation affect the same market. This price effect bears similarity to Zeira’s (1998) model,
in which the adoption of a labor-saving technology also depends on the price of labor.

Hémous & Olsen (2021) show that this economy cannot feature a BGP with equal growth
in low- and high-skill wages. An economy starting with low Nt, and consequently low wLt and
automation, is initially close to a BGP, growing just through horizontal innovation. As low-skill
wages grow, so does the incentive to automate, and the economy endogenously shifts toward au-
tomation innovation. This leads to an endogenous rise in the skill premium and a decline in the
labor share, as experienced in the United States since the 1980s. Eventually, the model features an
asymptotic steady state in whichGt is constant and all wages grow, but the skill premium continues
to grow. Hémous & Olsen (2021) calibrate an extended version of the model in which machines
belong to a capital stock to the data. The model can replicate quantitatively (and endogenously)
the evolution of the skill premium, the labor share, and automation and productivity growth in
the United States from 1963 to 2012.

4.2. Automation and Balanced Growth

Acemoglu & Restrepo (2018) also consider DTC in a task model but reach sharply different
conclusions. In contrast to Hémous & Olsen (2021), they include in their model a unit measure
of task, and output obeys

Y =
(∫ N

N−1
y(i)

σ−1
σ di

) σ
σ−1

. 19.

For this review, we restrict σ > 1. Therefore, a new task N replaces an old, now obsolete task,
N − 1. Tasks are produced monopolistically using the production function

y(i) = α(i)k(i) + γ (i)l (i), 20.

where k(i) is the use of capital in the production of task i, l(i) is the use of labor, and α(i) �

{0, 1} is the automation index. In this function, γ (i) = eAi is the labor-augmenting productivity
of task i, where A > 0: This means that new tasks feature higher labor productivity, though, once
automated, all tasks have the same (capital) productivity.

In the DTC case, automation is costly, so that all automated firms use machines. With γ (i)
increasing in i, there is a threshold I such that tasks below I are automated [α(i) = 1] and sold
at price p(i) = σ /(σ − 1)R, where R is the gross return on capital. In contrast, tasks in [I, N]
are nonautomated [α(i) = 0] and sold at price p(i) = σ /(σ − 1) ×W/γ (i), whereW is the real wage.
Using Equations 19 and 20, and factor-clearing conditions for K and L, one gets the aggregate
production function

Y =
⎧⎨
⎩[I − (N − 1)]

1
σ K

σ−1
σ +

(∫ N

I
γ (i)σ−1di

) 1
σ

L
σ−1
σ

⎫⎬
⎭

σ
σ−1

. 21.
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Equation 21 demonstrates that technology, characterized byN and I, determines the factor shares.
Hence, as in Hémous & Olsen’s (2021) model, technology is not factor augmenting.26

For given factors K and L,W/R depends positively on the introduction of new nonautomated
products,N, and negatively on the automation of existing products, I. An increase in N always in-
creases the absolute level of wages. As in Hémous & Olsen’s (2021) model, an increase in automa-
tion has an ambiguous effect on wages due to the combination of a scale effect and a substitution
effect—which are called productivity effect and displacement effect, respectively, by Acemoglu &
Restrepo (2018). The latter effect may dominate and leave automation to be labor saving. This
occurs in particular when R ≈ W/γ (i), i.e., when the cost savings of automation are relatively
low, a situation deemed a “so-so automation” by Acemoglu & Restrepo (2019a). Acemoglu & Re-
strepo (2019a, 2020a) argue that many modern innovations in automation have this feature and
correspondingly are labor saving.27

Following this, Acemoglu & Restrepo (2018) endogenize capital through a standard Ramsey
setting. Innovation is undertaken by scientists who are in fixed supply S and either develop new
tasks or automate existing tasks, so that Ṅ (t ) = κNSN(t ) and İ(t ) = κISI(t ), where SN and SI are the
respective numbers of scientists. Acemoglu & Restrepo assume that innovators must compensate
the previous incumbent.Here we focus on BGPs in which both types of innovation are active.This
gives the following value functions of automating a task and introducing a new one, respectively,

VI(t ) = Y (t )
∫ ∞

t
e−

∫ τ
t (R(s)−δ−gY (s))ds (πI(τ ) − πN(τ , I(t ))) dτ and 22.

VN(t ) = Y (t )
∫ ∞

t
e−

∫ τ
t (R(s)−δ−gY (s))ds (πN(τ ,N (t )) − πI(τ )) dτ , 23.

where gY(t ) = Ẏ (t )/Y (t ), R(s) − δ is the return to capital net of depreciation, πN(t, i)
= σ−1(W(t)/γ (i))1 − σY(t) denotes the profits of nonautomated tasks/products, and π I(t) =
σ−1R(t)1 − σY(t) denotes the profits of automated tasks/products. Equation 22 reflects the total
discounted value of being a monopolist of an automated task minus the compensation to the pre-
vious nonautomated monopolist who operated task I(t) at the time of automation, t. Equation 23
reflects the analogous expression for a monopolist developing the new nonautomated task N(t).
Therefore, the value function of a new automated task, VI(t), depends positively on (the path of )
W(t)/R(t), and the value function of a new nonautomated task, VN(t), depends negatively on it.

Combining this insight with the fact thatW/R depends positively on N − I, Acemoglu & Re-
strepo (2018) demonstrate that under appropriate regularity conditions (on ρ and κ I/κN), a BGP
exists in which κ IVI = κNVN, and all variables—W(t),K(t),Y(t),VI(t), and VN(t)—grow at the same
rate while R(t) is constant.28 Further,N and I grow at the same rate, such that the share of products

26In fact, one can write the Equation 21 as Y = [
(AK )

σ−1
σ + (BL)

σ−1
σ

] σ
σ−1 , where A ≡ (I −N + 1)

1
σ−1 and

B ≡ (
∫ N
I γ (i)σ−1di)

1
σ−1 . When σ > 1, automation, I, increases A and decreases B and can therefore be seen as

a combination of capital-augmenting and labor-depleting technical change (see also Aghion et al. 2019b).
27The aggregate substitution effect ofHémous&Olsen (2021) is derived for an endogenous use ofmachines as
intermediate inputs, whereas Acemoglu & Restrepo (2018) hold the stock of capital constant. This distinction
is made explicit by Acemoglu &Restrepo (2019a), who refer to the endogenous response of capital as a capital-
deepening effect. Acemoglu&Restrepo (2020a) find that robotization leads to a decline in employment,which
suggests that the aggregate substitution effect dominates the scale effect.
28The incentive for automation innovation in Acemoglu & Restrepo’s (2018) model depends on the relative
cost of labor and capital, whereas it only depends on low-skill wages in Hémous & Olsen’s (2021) model. This
difference arises from the assumption that machines are intermediate inputs in the baseline model by Hémous
&Olsen but is immaterial. In fact, when Hémous &Olsen take the model to the data, machines are part of the
capital stock, and the incentive to automate similarly depends on the relative cost of low-skill labor to capital.
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that are automated, 1 − N + I, as well as the factor shares, is constant. Intuitively, new tasks come
with a higher labor productivity, so that the effective amount of labor grows at the same rate as cap-
ital. In their full-fledged model, Acemoglu & Restrepo (2018) include heterogeneous effort costs
for scientists working in each type of innovation, which ensures that the allocation of scientists
varies smoothly. They demonstrate that this BGP is locally stable, such that a small perturba-
tion in the stock of automation, I, above its BGP path reduces W(t)/R(t), relatively discourages
automation, and correspondingly brings the economy back to the BGP level of automation.

Therefore, Acemoglu & Restrepo (2018) demonstrate that one can build an economic model
with tasks and automation that replicates the features of a model with purely labor-augmenting
technical change. In their model, workers’ role in the economy remains undiminished despite
the continued presence of automation. This is in sharp contrast to Hémous & Olsen’s (2021)
model, which shows that no BGP is possible and the role of low-skill workers in the economy
must diminish as the economy grows. Therefore, the two models present distinct views on the
development of the US economy over the past decades. Seen through Acemoglu & Restrepo’s
(2018) lenses, the recent decline in the labor share in the United States must come from factors
outside of the model. Acemoglu & Restrepo (2019b) compare the US economy before and after
1987 and argue that the latter period features lower overall productivity growth. They ascribe this
shift to tax advantages for equipment compared to labor, to a popular focus on automation, and
to declining government support for innovation, which otherwise tends to favor the creation of
new tasks. In contrast, seen through Hémous & Olsen’s (2021) lenses, the recent development of
the US economy is simply consistent with the fact that automation endogenously and gradually
increases as an economy matures. The extent to which the increase in automation innovation
reflects the endogenous development of an economy or rather shocks and policy changes is an
important issue for future research.

4.3. Other Models of Automation

The distinct theoretical predictions of Acemoglu & Restrepo (2018) and Hémous &Olsen (2021)
arise because of different assumptions on labor-augmenting technical progress in new products.To
demonstrate this, consider a combination of the two approaches by replacing Equation 20 with

y(i) = [b(i)l (i) + α(i)b(i)ςx(i)]β [b(i)h(i)]1−β , 24.

where variables are as defined by Hémous & Olsen (2021), and b(i) represents a technology level.
We are interested in whether low- and high-skill wages can grow at the same rate for an economy
with an asymptotic BGP. With this in mind, we consider exogenous technical change in which
b(i) = exp (Bi) and Nt = nt for some n > 0, and in which products are automated at a constant
Poisson rate. The parameter ς � [0, 1] reflects factor-augmenting technical change for ma-
chines, where ς = 0 ensures only labor-augmenting technical change, in the spirit of Acemoglu
& Restrepo’s model. Aggregate output continues to be given by a standard CES production
function using all products (Nt). The stocks of low-skill and high-skill labor are exogenously
given, whereas machines are produced one-for-one with the final good. In the Supplemental
Appendix, we demonstrate that only for ς = 0 will low- and high-skill wages grow at the same
rate asymptotically. When ς > 0, low-skill wages must grow slower. This result is in the spirit of
the Uzawa theorem but differs insofar as it refers to technological progress from one product to
another rather than to aggregate technological progress.

A related result is demonstrated by Ray & Mookherjee (2020). In a general framework with
both capital (complementary to labor) and robots (substitutes for labor), they demonstrate that
under general conditions, an economy that grows through capital accumulation must eventually
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have a labor share going toward zero, although wages might be growing asymptotically as low-
skill wages do in Hémous & Olsen’s (2021) model. They extend their model to include DTC,
which permits but does not require technological change to be labor augmenting as in Acemoglu
& Restrepo’s (2018) model. They show that, asymptotically, capital-augmenting technical change
will be at least as rapid as labor-augmenting technical change, and consequently the growth in
labor income will still be lower than the growth of the overall economy.

NeitherHémous&Olsen (2021) nor Acemoglu&Restrepo (2018) draw clear inferences about
whether the direction of technology is efficient.More interestingly,Acemoglu&Restrepo (2019b)
argue that innovation is inefficiently directed toward automation because the benefits from au-
tomation may be more front-loaded (analogously to dirty innovation in Acemoglu et al. 2012).
Acemoglu & Restrepo (2020b) argue that this is particularly the case for artificial intelligence.
This could be easily microfounded in Hémous & Olsen’s (2021) framework by assuming that au-
tomation can also be undertaken by entrants. Since the profits realized once a good is automated
partly motivate the creation of new intermediates, the incentive for horizontal innovation will be
lower if there is a risk that another firm will reap those profits. In this sense, the returns to hori-
zontal innovation are back-loaded relative to the returns to automation, a situation akin to that of
clean versus dirty innovation in Acemoglu et al.’s (2012) model.

In contrast with the models described above, Aghion et al. (2019b) model automation in a
task framework when the different tasks are complementary but ignore other innovations (in
Equation 19, this means that σ < 1 andN is fixed). Automation still allows for the use of machines
in place of workers in a given task, but with σ < 1, it is now equivalent to labor-augmenting
technical change combined with capital-depleting technical change (see footnote 26). They show
that there is a path to automation that is nearly consistent with balanced growth. It would be in-
teresting to see whether this proposition can be reconciled with endogenous innovation. Prettner
& Strulik (2020) model automation as the creation of additional varieties of machines that are
imperfect substitutes for labor (so that automation does not directly lead to the replacement of
workers in existing tasks).29

Further, whereas both Acemoglu & Restrepo (2018) and Hémous &Olsen (2021) focus on the
automation of goods production and have models in which the asymptotic growth rate is finite
and constant, in a second model Aghion et al. (2019b) explicitly focus on the automation of the
idea production function. They show that whether explosive growth happens depends on whether
a model features increasing returns to accumulable factors; that is, the product of the extent to
which each of the output and idea functions scales with the reproducible factors of technology
and capital. For instance, in either Acemoglu & Restrepo’s (2018) or Hémous & Olsen’s (2021)
model, if any of the tasks currently performed by high-skill workers/scientists in the development
of new products/tasks was automatable, the models would feature explosive growth.

Nakamura &Zeira (2018) study the effects of automation on unemployment in a model related
to that of Hémous &Olsen, including general processes of automation and horizontal innovation.
Automated tasks can be produced solely by capital, but to allow for a BGP, they require the pro-
ductivity of capital to be lower for newer tasks. They consider a small open economy with free
capital movement and assume that workers who are displaced by automation stay unemployed
for a fixed period of time before finding a new job. On their (asymptotic) BGP, the fraction of
tasks performed by humans that is automated in every period declines toward zero, and with it

29In a model with exogenous technical change, Martinez (2019) also derives an aggregate CES production
function from amicrofoundation of automation. In a cross-industry analysis, he finds evidence that automation
was a driving force behind the recent decline of the US labor share.
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unemployment. Casey (2018) also develops a model that features technological unemployment in
equilibrium. In his model with DTC, innovation might speed up both labor productivity growth
and unemployment.

This new DTC literature is still in its infancy, and more research can and should be done,
particularly to analyze the policy implications of DTC.

5. EMPIRICAL EVIDENCE

5.1. Environmental Economics

A large empirical literature has looked for evidence of induced technical change in environmental
economics. Popp et al. (2010) and Popp (2019) provide extensive literature reviews, and here we
mainly focus on a few recent papers.

Newell et al. (1999) show that technical change in air conditioners was biased against energy
efficiency in the 1960s, when energy prices were low, but this bias reversed after the energy shocks
of the 1970s. Most of the early literature uses macro data in contexts in which identification is
difficult. In a seminal paper, Popp (2002) uses time-series data on US patents and finds a long-
run elasticity of energy efficiency innovation with respect to energy prices of 0.35. In a panel
of US manufacturing industries, Brunnermeier & Cohen (2003) find that environmental patents
increase following an increase in pollution abatement expenditures. In a panel of Organisation
for Economic Co-operation and Development (OECD) countries, Jonstone et al. (2010) find that
public policies affect innovation in renewable energy, with broad policies (such as a renewable
mandate) being more effective for technologies that are closer competitors of fossil fuels (namely
wind, in their sample). Technologies farther from the market (e.g., solar) require more targeted
subsidies. Such results are consistent with Acemoglu et al.’s (2012) framework.30

Aghion et al. (2016) go further by presenting firm-level evidence. They focus on the car indus-
try from 1978 to 2005 and distinguish between clean patents (associated with electric, hybrid, and
hydrogen engines) and dirty patents (associated with fossil fuel engines). To measure the effect of
fuel prices on innovation at the firm level, they take advantage of the fact that innovators in the
car industry sell in several national markets to build a firm-specific fuel price. This fuel price is
computed as a weighted average of country-level fuel prices, where the firm-specific weights are
computed using a firm’s patent history pre-sample (as a proxy for a firm’s market shares).31 In the
spirit of a shift-share instrument, the effect of fuel price on firms’ innovation is identified through
the differential impact across firms of cross-country variations in fuel prices (or taxes) depending
on firms’ exposure to international markets. Aghion et al. (2016) estimate a large positive effect
of fuel prices on clean innovation, with an elasticity close to 1, and a negative effect on dirty in-
novation, with an elasticity close to −0.5.32 Furthermore, they find evidence of path dependence.
Through simulations, they show that, in line with Acemoglu et al.’s (2012) model, path depen-
dence exacerbates the gap between clean and dirty knowledge in business-as-usual conditions, but

30Readers are also referred to Verdolini & Galeotti (2011), who include knowledge spillovers, and
Dechezleprêtre & Glachant (2011), who separate domestic and foreign policies.
31Since a patent only protects an invention in the country in which it is applied for, whether a firm decides to
apply for a patent in a given country or not reflects how important this country is for the firm. Coelli et al.
(2020) show empirically that this is a good proxy for market share.
32In line with these results, Knittel (2011) finds that there is a trade-off between improved fuel efficiency
and other vehicle attributes, and that technical progress has responded to the implementation of regulatory
standards.
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it actually reduces the increase in fuel prices necessary to induce clean technologies to catch up
with dirty ones.

Several papers have used the same method to obtain variation at the firm level. Noailly &
Smeets (2015) study how clean and dirty innovations in electricity production respond to both fuel
prices and market size. Overall, their results support the DTC hypothesis: An increase in renew-
able market size or fossil fuel prices increases renewable innovation, and a larger fossil fuel market
leads tomore fossil fuel innovation. Surprisingly, an increase in fossil fuel prices also leads to a large
increase in fossil fuel innovation, but it is an increase in energy-efficiency innovations that drives
this. Their results also support path dependency (see also Lazkano et al. 2017, Lööf et al. 2018).

Using different identification strategies, other recent papers measure the direct effect of en-
vironmental policies on innovation using micro data. Calel & Dechezleprêtre (2016) show that
the European Union Emission Trading System (EU ETS) has increased low-carbon innovation
by 10% in regulated firms. To establish this result, they take advantage of the existence of regula-
tory thresholds at the plant level and follow a matched difference-in-differences strategy whereby
they compare regulated firms with unregulated firms of the same size. Calel (2020) finds similar
results. Dugoua (2020) evaluates the effect of international environmental agreements on innova-
tion. She focuses on the Montreal Protocol, which has regulated the use of chlorofluorocarbons
(CFCs) since 1989, and finds that it led to an increase of 4,000% in patents pertaining to CFC
substitutes relative to similar molecules. Howell (2017) exploits the fact that the US Department
of Energy allocates R&D grants to small businesses through a grading scheme. Using a regres-
sion discontinuity analysis, she finds that receiving a grant increases patenting, survival rate, and
venture capital, with stronger effects for firms likely to be more financially constrained.

Having established the empirical existence of DTC from price and market size effects, the
literature is moving to study other factors driving technical change as well as interaction effects.
For instance, Aghion et al. (2020) extend the setup of Aghion et al. (2016) to study the roles of both
consumer value and competition in driving innovation in the car industry. They find that when
consumers value the environmentmore, clean innovation in the car industry increases, particularly
when competition is more intense.They estimate that the simultaneous increase in environmental
valuation and competition that happened in 1998–2002 and 2008–2012 had the same effect on
innovation as a 40% increase in fuel prices.

5.2. Labor Economics

The empirical literature on DTC in labor economics is comparatively smaller. A few papers show
that labor market conditions affect labor-saving technology adoption in health care (Acemoglu &
Finkelstein 2008), agriculture (Hornbeck &Naidu 2014, Clemens et al. 2018), and manufacturing
(Lewis 2011). Both Lordan & Neumark (2018) and Aaronson & Phelan (2019) look at the conse-
quences of minimum wage hikes on routine jobs. Acemoglu & Restrepo (2019c) find that aging
of the population is associated with greater adoption of robots and other automation technologies
in cross-country regressions. Further, this effect is stronger in industries relying more on middle-
skill workers in industry × country-level regressions. More importantly for the purpose of this
review, they also find a positive correlation between population aging and patenting in robotics.
Alesina et al. (2018) find that across countries, labor market regulations are positively correlated
with innovation in low-skill-intensive sectors.

A few recent papers use micro evidence. Dechezleprêtre et al. (2019) develop a new classifica-
tion of patents in the machinery sector as automation or nonautomation by combining informa-
tion on patent texts and technological classes.They build on the empirical strategy of Aghion et al.
(2016), taking advantage of the market structure for most innovation in automation technology:
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Innovation is highly concentrated in a few large companies, which sell their technology to other
(typically manufacturing) firms around the world. Consequently, the demand for automation, and
with it the incentive to innovate, is determined by the wages paid by these potential customers.
They compute a proxy for the low- and high-skill wages paid by these customers by taking a
weighted average of country-level wages, where the weights are calculated using the geographical
dispersion of patents pre-sample. They find a large positive effect of low-skill wages on automa-
tion innovations, with an elasticity between 2 and 4. In line with capital-skill complementarity,
high-skill wages tend to reduce automation innovations. In contrast, wages do not have a sig-
nificant effect on nonautomation innovations in machinery. Moreover, they show that the Hartz
reforms, a series of reforms implemented in Germany between 2003 and 2005 to increase labor
market flexibility, led to a relative decrease in automation innovations in non-German firms more
exposed to Germany. Relatedly, Bena & Simintzi (2019) attempt to distinguish between process
and product innovations in patent data and find that firms with better access to the Chinese labor
market decreased their share of process innovations after the 1999 US–China trade agreement.
Note that process and automation innovations may overlap but are distinct concepts.

Several papers use immigration to relate labor scarcity to innovation. San (2019) shows that
following the exclusion of Mexican seasonal agricultural workers, patenting increased for crops
that rely more on agricultural labor. Danzer et al. (2020) rely on the regional allocation in Ger-
many of ethnic German migrants from the collapsing Soviet Union. They also classify patents as
automation or nonautomation and find that regions receiving more immigrants developed fewer
automation patents. Andersson et al. (2020) use an instrumental variable strategy to show that
Swedish emigration to the United States led to higher wages and innovation in the most affected
municipalities. They do not, however, look at the direction of innovation. In contrast, Doran &
Yoon (2020) find that innovation decreased in the US cities most affected by the 1920 immigration
quotas, which reduced immigration from Southern and Eastern Europe. These perhaps contra-
dictory results highlight the fact that analyzing the effect of labor scarcity on innovation requires
a distinction between different forms of innovation.

6. CONCLUSIONS AND FUTURE RESEARCH

The literature has established that innovation responds strongly to market incentives and that
its endogeneity matters for macroeconomic outcomes. The development of several COVID-19
vaccines in less than a year provides another example in a different context. The original DTC
framework of Acemoglu (1998) has been successfully applied in various contexts. A recent liter-
ature has developed new DTC task models to analyze automation. A potential avenue for future
research is to use these new models in other contexts, notably environmental economics.

Our review has identified two important questions to be asked. First, is the economy on a
BGP? Should this not be the case, DTC can account for path dependence in energy technologies
in environmental models and for growing income inequality in labor models. In contrast, on a
BGP, an economy would revert to the same path after a shock. Testing for the existence of a BGP
would be a complex but rewarding empirical endeavor.

Second, is the gap between the private and social returns of innovation the same for all tech-
nologies? The answer to this question determines whether industrial innovation policies are called
for. In the environmental context, Acemoglu et al. (2012) and the literature that followed provide a
strong case for a green innovation policy: Climate policy should be designed with innovation at the
forefront. The question is more open in the labor context: Should automation be encouraged or
hindered? Future research should delve deeper into this important issue, in particular because the
DTC labor literature has paradoxically sidelined the distributional aspects of innovation policy.
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