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Abstract
The average depreciation rate in the United States has increased since the 1970s, a pattern 
most likely matched in other advanced economies. We argue that a higher depreciation rate 
has reduced the risk-free interest rate. We do so in a quantitative overlapping-generations 
model which allows for risk-premia and market power. We show that the importance of 
the rate of depreciation on the risk-free interest rate depends crucially on the elasticity of 
intertemporal substitution as well as the size of market power. Our calibrated model shows 
that higher depreciation plausibly reduced the risk-free rate by 30 basis points over the past 
half century. We contrast our results with models using a representative-agent framework 
(Farhi and Gourio in Accounting for macro-finance trends: market power, intangibles, and 
risk premia. Brookings papers on economic activity, 147, 2019) which typically do not find 
a role for the rate of depreciation.
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JEL Classification E43 · O4 · E13 · E21

1 Introduction

During the past fifty years, the natural real rate of interest in Advanced Economies has 
declined by about 300 bps (Rachel & Summers, 2019).1 Concurrently, there has been a 
consistent decrease in real rates for secure assets. Fundamentally, this trend might be the 
result of increased aggregate savings, reduced aggregate investments, or a mix of both. 
Our analysis introduces a previously overlooked but potentially important element: an 
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escalating rate of capital depreciation. We utilize an overlapping-generation framework and 
demonstrate that the more typical representative-agent framework a priori rules out a role 
of depreciation on the real rate of interest.

As documented in the following, the average rate of capital depreciation appears to 
have risen by slightly more than 1 percentage point in the United States over the last half 
century. The best cross-country data available indicates a similar trend in other Advanced 
Economies. Our analysis, utilizing comprehensive data from the U.S. Bureau of Economic 
Analysis, reveals that this increase in depreciation is widespread across various sectors. 
It remains unclear how much of the observed increase in depreciation is due to physical 
depreciation and how much is due to revaluation, although intuition may perhaps suggest 
the latter is more important when it comes to IT-related assets. We demonstrate that an 
increase in depreciation rates will lower the steady-state risk-free rate, regardless of its 
cause.

To support this claim, we develop an overlapping-generations model of a closed econ-
omy. Our model features risky investment, market power, and differential (exogenous) tech-
nological progress for consumption and investment goods. The model is designed to cap-
ture three key mechanisms. Firstly, it assumes a quicker pace of (exogenous) technological 
advancements in investment goods compared to consumption goods, leading to a steady 
decline in the relative investment prices. Secondly, the user-cost of capital depends on the 
cost of borrowing (i.e., the real rate of return), physical depreciation, and the rate of change 
in the relative price of investment. When the relative price of investment goods continu-
ously declines (or the rate of physical decay goes up), the user-cost of capital increases. 
The reason why prices matter is because the act of investment involves a capital loss: the 
price at which the capital good is purchased is higher than the later resale value. Hence we 
capture faster depreciation as either greater physical decay or a faster rate of investment 
good deflation. Third, with overlapping generations, households have a life-cycle motive 
for savings. In our baseline model, we have a two-period life, but in the quantitative setting 
we allow for arbitrary length of lifespan and work life. This creates an upward-sloping sup-
ply curve of savings as a function of the risky return on assets.

These three elements interact in the following way. Assume a scenario where the rate 
of technological advancement accelerates for investment goods relative to consumption 
goods, resulting in a faster relative price deflation for investments. To fix ideas suppose that 
this experiment leaves the steady state growth rate of the economy, which is a combination 
of technological change for the consumption and investment goods, unaffected. In such a 
case, an increase in economic depreciation reduces the demand for capital as the user cost 
of capital increases. With an upward-sloping supply of savings, this lowers the risky rate 
and increases the gap between the marginal product of labor and the risky rate. The mag-
nitude of the decline in the risky rate depends on the slope of the supply of savings, which 
we show depends crucially on the elasticity of intertemporal substitution and the extent of 
monopoly power in the economy. We contrast this with a representative agent model where 
the supply of savings is horizontal and changes to the rate of depreciation do not affect the 
risk-free rate.

The production side of our economy closely mirrors that of Farhi and Gourio (2019, 
henceforth FG). Like them, we include risky returns, monopoly power, and different rates 
of technological growth in an analogous manner. With risky returns, it is necessary to dis-
tinguish between the risky rate of return and the risk-free rate, and the spread between the 
two is determined by a combination of risk-preferences and riskiness of the asset. Since 
the production side of the models is identical, so is the demand for physical capital as a 
function of the risky rate. With identical production structures, we can focus on the crucial 
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distinction between the two models, which is the supply of physical capital. In both mod-
els, the demand comes from firms that rent physical capital. In FG, the supply curve comes 
from the Euler equation of the representative agent, which creates a horizontal supply of 
capital, and does not permit depreciation to affect the risky rate. In our model, in contrast, 
savings come from agents who wish to save for future consumption. They can do so in two 
manners: By investing in physical capital, which is then rented by the firms, or by buying 
equity in the same firms. With monopoly power, firms receive monopoly rents, which they 
pay out as dividends. Equity is valued as the net present value of future dividend payments. 
The supply curve of physical capital is thereby the combination of two things: the savings 
of current workers and retirees and the fraction they choose to invest in physical capital. 
This creates a supply curve of physical capital that is generally not horizontal but depends 
on two factors: First, the elasticity of intertemporal substitution (EIS). If this elasticity is 
low, savings are only mildly affected by the risky rate. This by itself creates a steep supply 
curve and thereby a large effect of higher depreciation on the risky rate. However, with 
equity, there is an additional effect: A lower risky rate increases the net present value of 
dividends, and thereby the value of equity. This directs more savings towards equity and 
reduces the supply of capital. This flattens the supply curve of physical capital and reduces 
the effect of depreciation on the risky return.2

The gap between risk-free and risk-free rates is shaped primarily by risk factors and 
individual risk preferences. Thus, any changes that arise from other variables, including 
depreciation, simultaneously affect both rates. Consequently, any alteration of the risky 
rate also impacts the risk-free rate, maintaining their relationship.

We calibrate our model to the US data from 1984 to 2000, which is the time period 
where the rate of depreciation grew the most. We use nine equations to match nine param-
eters exactly. Based on these parameters, we find that the observed increase in depreca-
tion of around 125 basis points translates into a decline in the risk-free rate of around 30 
basis points for an elasticity of intertemporal substitution of 0.25.3 These are significant 
effects in light of the observed decline in the natural real rate of return of about 300 bps 
(Rachel & Summers, 2019). There is considerably disagreement about the size of the EIS. 
In the following, we discuss this literature and argue for a low EIS between 0 and 0.5. In 
a competitive economy, the shift in savings towards equity would not have been present 
and the effect on return consequently around 90 basis points, illustrating the importance 
of monopoly power. The increase in the rate of depreciation was the highest in the period 
until the 2000s, and it has been relatively stable since while the risk free rate has continued 
to decline. Consequently, we focus our analysis on the time period leading up to 2000 and 
do not claim that the rate of depreciation has contributed to the decline in the rate of inter-
est over the past 20 years.

We employ a Cobb–Douglas production function. This ensures that a familiar mecha-
nism, linking a change in the relative price—as opposed to a change in the rate of decline 
of prices—of investment to the real rate, is not present: Holding the marginal product 
constant, cheaper investment goods means that a given amount of savings buys more 

2 Moll et  al. (2022) develop a model with an upward-sloping supply curve of capital in the interest rate 
arising from a specific dissipation shock to wealth accumulation and argue that a broad class of models 
would feature upward- sloping supply curves. Though our focus here is on the savings motive, other models 
with an upward sloping supply curve would also find that a higher depreciation rate lowers the real interest 
rate.
3 The effect would be higher for a lower EIS, but less than 10 basis points for an EIS of 2
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investment, which increases the return to investment, but holding savings constant, more 
investment lowers the marginal product of capital, which reduces the return on investments. 
If the elasticity of substitution between capital and labor is smaller than one, the real rate 
is reduced in equilibrium (e.g., Sajedi and Thwaites, 2016). With identical Cobb–Douglas 
technologies, these effects cancel out. Canceling the familiar effects of a change in the rela-
tive price of investment allows us to focus on the effects from changes to the rate of decline 
in the price of investment goods.4

The paper is related to the recent literature that discusses plausible explanations for the 
observed decline in real rates of interest over the past half century. Several contributing 
forces have been put forward. Useful overviews of the literature are found in Rachel and 
Smith (2017), Rachel and Summers (2019), and Kiley (2020). The contribution of the pre-
sent paper is to explore the relevance of capital depreciation, a factor that has so far seemed 
neglected. Similarly related are contributions that aim to explain the gap between the mar-
ginal product and the real rate, e.g. via rising market power or rising risk premia; Eggerts-
son et al. (2021) contains an overview. Rising depreciation is a mechanism that has also 
been left unexplored in this literature. One notable exception is FG who do explore the 
importance of depreciation for gap between the marginal product and the risk-free rate, 
concluding it has been unimportant. As we argue below, the reason for this is twofold: 
the representative agent framework implies a horizontal savings schedule, which our OLG 
model does not. Second, they compare 1984–2000 to 2001–2016 and infer relatively little 
increase in depreciation (physical + economic) between the two periods. We directly cal-
culate the average depreciation rate over a longer time period from 1970 onward, where the 
rate of depreciation has increased by more than 100 basis points.

The paper proceeds as follows. In the next section, we document that the average rate of 
depreciation has increased. Section 3 demonstrates that for our purposes physical deprecia-
tion and economic depreciation from price deflation are equivalent. Section 4 provides a 
two-sector OLG and derives our analytical results. Section 5 extends the model to longer 
life expectancy and working life and performs the quantitative assessment.

2  Aggregate movements in the rate of depreciation

2.1  Measuring capital depreciation

From a national account perspective, “depreciation” is defined as the change in the value 
of a capital good associated with the aging of the asset (Fraumeni, 1997). When a capital 
asset ages, its value may change for several reasons. For one, physical wear and tear, which 
cause the productive capacity of a capital good to decline, make it less valuable as it ages. 
In addition, the value of an asset can change due to inflation, revaluation, or other factors 
that may be correlated with the age of the asset.

In practice, the rate of capital depreciation can be estimated for an individual type of 
capital good using the regression-based approach pioneered by Hulten and Wykoff (1981). 
By employing data on the resale price of assets, the effect of aging can be separated from 

4 While the mechanism discussed in Sajedi and Thwaites (2016) and the one in focus here are not mutually 
exclusive in their contribution to a decline in the real rate of interest only the depreciation channel produces 
a gap between the real rate and the marginal product.



Journal of Economic Growth 

pure time effects caused by inflation, and if data are available, the “vintage” effect can also 
be controlled for.5

The Bureau of Economic Analysis (BEA), for example, distinguishes between more 
than 250 different asset types. While the depreciation pattern for a particular vintage of a 
capital good is assumed to be constant over time, the depreciation profile may differ across 
different vintages of capital goods (BEA, 2003, p. 29).

Ultimately, BEA and other statistical agencies use the estimates for depreciation to con-
struct net capital stocks and thus consumption of fixed capital in national accounts (Katz 
& Herman, 1997). Combining depreciation rates with investment data, the perpetual inven-
tory method is employed to construct net capital stocks. The net stock of capital in a par-
ticular year is the difference between the accumulated past gross investment and the value 
of the accumulated depreciation, and the calculation is conducted at the type-of-asset level 
of detail.

Finally, to calibrate the average depreciation rate many macro applications have tradi-
tionally used the weighted average of the underlying (estimated) depreciation rates where 
the individual weights are the real shares of the individual capital stocks. This can be 
accomplished by “inverting” the aggregate capital accumulation equation where invest-
ments and capital are at constant prices (Cooley & Prescott, 1995):

However, the procedure has a couple of drawbacks. First, when using real shares as 
weights, the time path of the average depreciation rate becomes sensitive to the choice 
of the base year, just as the average growth of fixed-price GDP is sensitive to the choice 
of the base year. Specifically, if high depreciation assets have exhibited declining prices 
over time (e.g., computers), and the final year is used as a base year, the real share in the 
initial year is lowered, which mechanically tends to produce a positive trend (Oulton & 
Srinivasan, 2003). Second, if investments are chain-weighted, it is no longer true that the 
above approach produces a weighted average of the underlying depreciation rates (Whelan, 
2002). Once again the “traditional” approach might lead to an artificially upward trend-
ing average depreciation rate (Whelan, 2002). To avoid these drawbacks Whelan (2002) 
and Oulton and Srinivasan (2003) recommend using nominal shares as weights when one 
calculates the average depreciation rate. We follow this approach when looking at the BEA 
data for the US below.

There is a varied literature on the measurement of the depreciation rate, in particular 
using US and Canadian data (BEA, 2003; Patry 2007, respectively). Tevlin and Whelan 
(2003) establish that the depreciation rate has increased substantially due to the increased 
reliance on computers, and more recent work estimates the rate of depreciation of R &D 
(de Rassenfosse & Jaffe, 2017).

�t =
It − ΔKt

Kt−1

.

5 The precise shape of the link between the age of an asset and its price can in addition be used to assess 
which type of depreciation seems to be occurring. For example, if capital depreciation is geometric one 
would expect the resale value of the asset to decline geometrically with the age of the asset; geometric 
depreciation is often difficult to reject (Hulten and Wykoff, 1981).
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2.2  The evolution of average depreciation: a cross‑country perspective

We start by exploring the evolution of average depreciation for the bloc of Advanced Econ-
omies (AEs). Data on average depreciation rates come from Penn World Tables (PWT, 
Feenstra et al., 2015).6 In the cross-country context, we focus on the GDP-weighted aver-
age depreciation rate for the group of Advanced Economies (AE), as defined by the IMF, 
from 1970 until today. In addition to the weighted average, we also calculate the simple 
average and the median.7 We focus on AEs because Rachel and Summers (2019) recently 
estimated the natural rate of interest for this group, as noted in the Introduction, document-
ing a decline since 1970.

The result is shown in Fig. 1a. While the average depreciation rate is relatively flat from 
1970 to 1990, it has increased by around 100 basis points since 1990. As can be seen, the 
simple average and the median move in a similar way, suggesting that this pattern is per-
vasive for the group of countries in focus. With an eye to the analysis in the next section, 
where we focus on the US, panel b of the figure depicts the evolution of average deprecia-
tion in the US according to PWT. The path is similar to that detected for the AE group as a 
whole, albeit the recent increase is greater than that for the AE group.

Why has the depreciation rate increased? In the case of the PWT, where the capital 
stock comprises nine types of capital with depreciation rates assumed constant and identi-
cal across countries, the reason is a given: the composition of the capital stock has changed. 
Over time an increasing fraction of the capital stock consists of short-lived assets, such as 
ICT and software. At the same time, it is important to note that PWT calculates the average 
depreciation rate using real shares as weights (e.g. Inklaar et al., 2019). As outlined above 
(and discussed in Oulton and Srinivasan, 2003), this tends to mechanically produce upward 
trends in the deprecation rate. This is perhaps most easily illustrated by ICT capital in the 
1990s. Measured in today’s dollars the real stock of ICT capital in the 1990s was very 
small due to the large subsequent declines in ICT prices. The average depreciation rate 
weighted by real capital will therefore put almost no weight in the 1990s on the relatively 
high depreciation rate of ICT. However, from the perspective of agents making invest-
ment decisions in the 1990s what mattered was prices at the time, that is, nominal values. 
In Appendix A we elaborate on this: we consider a counter-factual series where both the 
nominal capital shares and the depreciation rate for each asset type are constant. From the 

6 Ideally one would like to use detailed national accounts data for each country. But since the practices 
regarding depreciation are not fully aligned across statistical agencies (some may use linear depreciation 
for parts of the period in focus, for example), we resort to Penn World Tables (PWT, Feenstra et al., 2015) 
where the average depreciation rate is computed at a consistent basis. The cost is a smaller selection of indi-
vidual assets; PWT distinguishes between nine different asset types. Depreciation is assumed to be geomet-
ric and constant across countries and time (cf Inklaar et al, 2019, Table 3).
7 The PWT does not have information on GDP and depreciation rates for all AEs throughout all years since 
1970. Therefore, we exclude a few smaller economies. These countries constitute less than 4 percent of 
GDP in 2017.
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perspective of agents in the economy the depreciation rate would be constant, but using the 
real stock of assets as weights creates a growing depreciation rate.8,9

To better understand the movements in average depreciation, we, therefore, turn to data 
for the US. This change in perspective will allow us to explore the evolution of average 
depreciation using nominal shares as weights (Whelan, 2002; Oulton & Srinivasan, 2003). 
It will also allow us to perform a detailed decomposition analysis designed to shed light on 
the underlying drivers of the long-run evolution of average depreciation.

2.3  The evolution of average depreciation: US data

Based on BEA data, Fig.  2 shows the evolution of the average depreciation rate for the 
United States from 1970 to 2020 (weighted by nominal capital). As is clear, the overall 
increase in average depreciation weighted by nominal stocks is a bit more modest than 
suggested by PWT data weighted by real stocks. The time path is also somewhat different. 
Using the BEA data, depreciation rises from the early 1970s until the early 1990s and stays 
more or less flat until 2020, compared with a more gradual increase for the PWT data. 
Quantitatively the average depreciation rate rises by about 125 basis points from 1970 to 
2000 with a relatively flat path from 2000 to 2020.

Using the richer BEA dataset, it is possible to analyze the proximate sources of this 
increase at a higher level of resolution. Specifically, to explore the source of rising depre-
ciation we use the detailed subdivision of 72 asset types. We next calculate the overall 
depreciation rate as �t =

∑
i �i,tKi,t∕Kt, where Ki,t is the nominal (current-cost) stock of pri-

vate fixed asset of type i ( Kt is the total stock) and �i,t is the depreciation rate (deprecation 
divided by stock of capital for each asset type). Finally, we perform a decomposition of the 
change in the deprecation rate between period t − s and t as:

where the first term gives changes in the aggregate depreciation rate from differential 
growth in asset classes with different depreciation rates, and the second term considers 
changes in the depreciation rate within asset types.

�t − �t−s =
∑
i

�i,t−s

(
Ki,t

Kt

−
Ki,t−s

Kt−s

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Reallocation

+
∑
i

Ki,t

Kt

(
�i,t − �i,t−s

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Changewithin asset type

,

8 More formally: Consider an economy with two types of assets and a Cobb–Douglas aggregator of the 
two. The capital types are ICT where prices decline with Δ > 0 each period such that the price at time t is 
Pt = (1 + Δ)−t . Structures do not see declining prices. Assets have the same physical rate of deprecation. 
Suppose a steady state exists where investment in the two types grows in proportion to the economy. In 
such an economy, the ratio of each nominal stock of capital to output will be constant. However, the ratio 
of the real stock of ICT capital to production will increase at a rate Δ . This implies that when using the real 
stock of capital when weighing the aggregate depreciation rate (physical + economic), one puts increasing 
weight on ICT and consequently measures an increase in the depreciation rate. Furthermore, the aggregate 
depreciation rate for any given year will depend on the choice of base year for the price index. The nominal 
stock of capital does not suffer from this built-in bias. Furthermore, for agents’ investment choices, it is the 
nominal stock of capital that matters.
9 Though the PWT relies on 9 underlying asset categories, the publicly available data only has four: Struc-
tures, machinery, transport equipment, and others. Since the detailed BEA data demonstrate that software 
and IT are particularly important, we do not perform an exercise in which we weigh the PWT data by nomi-
nal assets.
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Figure 3a performs this decomposition for each one of the decades from 1970 to 2020 
as well as the whole period. Though there has been substantial variation over the decades, 
the two terms are of roughly equal importance.10 Since the 72 asset types used for the cal-
culations here are themselves aggregates of finer asset types, this estimate presents a lower 
bound on what the reallocation effect would be from a finer disaggregation. ICT and soft-
ware are important drivers of the increase in depreciation: Whereas the increase in depre-
ciation across all assets is 1 percentage point, it is 0.8 when excluding ICT and 0.2 when 
excluding both ICT and software.

As can be seen from the figure, the analysis suggests a roughly 50/50 split between real-
location and change within asset types. The two categories have seen the largest increase in 
the rate of depreciation are computers and pre-prackaged software with, respectively, 23.7 
and 21.2 point increase in the rate of depreciation from 1970 to 2020. These calculations 
complement existing studies that have focused on the impact on aggregate depreciation 
from the rise of particular asset classes such as ICT (Tevlin & Whelan, 2003) or R &D and 
intangibles (Corrado et al., 2005)

We perform an analogous analysis based on industry composition. Panel b of Fig.  3 
shows a decomposition using the same method across 18 industries. The panel shows that 
the entire change in depreciation comes from within-industry changes with a minor nega-
tive contribution from reallocation. As a result, the underlying changes in the capital stock 
which account for the rise in depreciation is a pervasive phenomenon across sectors. To 
the best of our knowledge, this is a novel finding. Though not the main focus of the present 
paper, understanding this pattern deeper would be an interesting focus for future work.

2.4  Discussion

The average rate of capital depreciation using the nominal stock of capital has risen since 
1970 in the US. The data from the PWT show a similar trend for the block of AEs. Though 
this data weighs the depreciation rate by the real stock of capital and consequently, has a 

Fig. 1  The depreciation rate for advanced economics (weighted by real capital. Source: PWT 9.1)

10 The negative reallocation effect from 2000 to 2009 is primarily due to a peak in ICT/software capital 
around the Dot-com boom around the year 2000. There is some contribution from growing real estate capi-
tal until 2009 as well.
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built-in bias towards an increase in the rate of depreciation, the similar patterns in cross-
country data suggest a pervasive phenomenon. Baldwin et al. (2015) also find an increase 
in the aggregate depreciation rate in Canada, primarily due to compositional effects.

As discussed above, average depreciation rates are affected by both physical “wear and 
tear” and revaluation; if the (relative) price of used capital declines, it shows up as faster 
capital depreciation. When the resale value of capital falls it may, however, also reflect that 
investment goods are firm- or sector-specific. Studying aerospace plant closings, Ramey 
and Shapiro (2001) find evidence that investment specificity appears to be important in 
practice. But since inter-sectoral reallocation seems to be of minor importance to the rise in 
average depreciation this latter channel is probably not paramount to the issue in hand. This 
leaves accelerated physical decay and revaluation.11

There is no general way in which to fully separate “wear and tear” from revaluation 
(Hall, 1968), so the data may be taken to imply that over time the capital stock increas-
ingly consists of capital types featuring faster physical depreciation, revaluation or both. In 

Fig. 2  The depreciation rate for 
the United States (weighted by 
nominal capital. Source: Bureau 
of Economic Analysis)

a b

Fig. 3  Decomposition of change in depreciation rate—by decades and whole period. Note: The accumula-
tion of changes over decades does not add up to change over the whole period

11 The study by Ramey and Shapiro (2001) also contributes to the literature on capital depreciation in that 
they have access to the actual purchase price of the equipment, which otherwise is assumed in the literature 
to be identical to the list price. Moreover, by studying a natural experiment (plant closings) their sales data 
should be free of the “lemons problem” which refers to the concern that part of the price reduction that the 
literature classifies as depreciation may be due to selection. Reassuringly their estimates are fairly similar to 
the existing estimates in the literature.
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the context of IT equipment, the revaluation channel is most likely relatively more impor-
tant (Geske et al., 2007), although age-related effects also seem to matter (Doms & Lewis, 
2005).12

Before proceeding to the full model, we demonstrate the equivalence of physical and 
economic depreciation (through revaluations).

3  Physical depreciation and revaluation

Before we proceed with the theoretical model, we quickly discuss the distinction between 
physical depreciation and revaluation (Fraumeni, 1997). Though typically depreciation 
is modeled as physical, as discussed above, the observed rise in depreciation is equally 
likely to be the result of revaluation considering the key role played by IT, software, etc. 
in the observed increase in average depreciation. Karabarbounis and Neiman (2014) show 
an accelerating decline in the global price of investment goods from 1980 since when real 
prices have declined by around 2 percent a year to 2010. This would depreciate the value of 
existing capital goods.

To see the influence from revaluation in a simple way, suppose that we distinguish 
between investment and consumption goods with different price trajectories. We normalize 
the price of consumption goods to 1, and, to simplify matters, consider a one-period prob-
lem facing a profit-maximizing representative firm. The firm can rent capital in a competi-
tive market at the rate Rt.

Profits are therefore given by:

with first order condition:

Now, consider the a young person who wishes to save one unit of the final good for the 
future in period t − 1 . This person can do so by buying capital stock at the prevailing price 
pt−1 and renting it the following period to the firm. One unit of the final good gives 1∕pt−1 
units of capital which gives a return of:

This expression has two terms: First is the rental rate paid by the firm. Second it the value 
of the capital in the following period. This consists of the remaining (1 − �)∕pt−1 physical 
units of capital now priced at (the lower) pt.

Combining the two we find a relationship between marginal product of capital and the 
return on savings as:

Π = F(Kt,AtLt) − wtLt − RtKt,

FK = RtKt.

1 + rt = Rt∕pt−1 + (1 − �)pt∕pt−1.

12 As pointed out by the authors, this channel undoubtedly captures more than physical decay. E.g., if 
new software becomes progressively harder to run on existing IT equipment, this will show up as an “age 
effect”, which illustrates the point that economic and physical depreciation is hard to disentangle in prac-
tice.
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where pt∕pt−1 < 1 with declining prices. With constant capital prices at pt = 1 , this condi-
tion reduces to the familiar: FK = MPK = rt + � . But in the two-sector setting, the (rela-
tive) price of capital reflects buying and selling of capital may involve either capital gains 
or losses. In the case where the price of capital is declining over time, relative to the price 
of consumption, the transaction involves a capital loss which raises the user-cost of capital 
just like higher physical capital depreciation does. From a partial perspective, therefore, 
there is no difference between an increase in � or a fall in pt∕pt−1 ; both will serve to reduce 
the demand for capital for a given rt.13 As discussed in the last section, the rise in NIPA 
average depreciation is most likely caused by either rising physical depreciation ( � ), revalu-
ation ( pt∕pt−1 < 1 ), or both. Though the following model will have both monopoly power 
and risky returns, this partial equivalence between physical deprecation and economic 
depreciation (revaluation) will still be present.14

From a broader perspective, however, there is a difference in that the fall in the price 
of capital is endogenous. It might, for instance, be caused by a faster rate of technological 
changes in the capital goods-producing sector than what prevails in the consumption goods 
sector. A faster decline in the (relative) price of capital, therefore, reflects a faster rate of 
technological change which will matter to capital accumulation in its own right via the 
long-run growth rate of the economy. But a similar outcome to the one described in the one 
sector setting can be obtained if total growth of the economy is held constant by changing 
the sources of technological change.

Below we construct a two-sector model where both the consumption good and the 
investment good are produced with the final good, and there is technological progress in 
both the production of the final good and the investment good.15 The steady-state growth 
rate of the economy combines these two. An increase in the growth rate of technology for 
investment goods will increase the overall growth rate of the economy, which has not gen-
erally been observed. However, a shift in technological growth from consumption goods 
to investment goods leaves the growth rate of the overall economy constant but drives the 
prices of investment goods down thus producing the effect on the user-cost of capital dis-
cussed above.16 In this case, the remarks above will carry over: faster economic deprecia-
tion will lower the real rate of return in the OLG setting, but not in the model with a repre-
sentative agent.

FK = pt−1

[
1 + rt −

(1 − �)

pt−1∕pt

]
,

16 This is related, but distinct, from a recent literature arguing that technological change has shifted in favor 
of automation without increasing the overall growth rate of the economy (Acemoglu and Restrepo, 2019; 
Hémous and Olsen, 2022). Automation, however, is the replacement of labor tasks with tasks performed by 
capital, whereas faster technological growth in investment goods is the more rapid replacement of capital by 
new vintages of capital.

13 Note, what matters is here is the deflation in prices of capital, not the level per se. Sajedi and Thwaites 
(2016) use a framework with a CES production function and demonstrate how the change in the level of the 
relative price of capital influences the return to capital.
14 Fraumeni (1997) distinguishes between revaluation due to a obsolescence or changes or changes in asset 
prices. Our framework does not distinguish between the two.
15 Alternatively, we could have built a vintage capital model along the lines of Phelps (1962). This will 
give rise to the same result.
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4  The model with two generations

We consider a closed overlapping-generations economy. Time is discrete t = 1, 2...∞ . The 
economy consists of two sectors that produce consumption goods and investment goods, 
respectively. The price of the consumption good is normalized to one. Both sectors experi-
ence exogenous technological change, but the growth rate is stochastic as specified below. The 
population grows at the rate gL . The production side of the economy mirrors that of Farhi and 
Gourio (2019, FG), but whereas they use a representative agent framework our model features 
overlapping generations.

4.1  Consumers

For simplicity we first consider a model where agents live for two periods. When we bring the 
model to the data and relate it to the quantitative work of FG we allow for lifespans of arbi-
trary length. In the first period of life, workers supply one unit of labor inelastically for which 
they receive a wage, wt . During old-age, individuals consume the returns on their savings. To 
flexibly allow for the role of risk, we follow FG and assume Epstein-Zin preferences such that 
the utility of a young person (in period 1 of their life) is given by:

Without uncertainty this reduces to the standard specification of discounted utility.
Here c1,t and c2,t are the consumption of, respectively a young and an old person in period 

t. � is the inverse of elasticity of intertemporal substitution (EIS), and � is the coefficient of 
relative risk aversion. When � = � the model features standard discounted expected utility 
expression.

The utility of an old person, where uncertainty has been resolved, is:

In anticipation of the equilibrium structure of the model, we solve the savings problem 
of a young person who only has access to a savings technology with stochastic return of 
(1 + r∗

t+1
)e�t+1 ,where �t+1 is a stochastic shock to returns and is i.i.d.. We let Ete

�t+1 = 1 such 
that the expected gross return on this asset is 1 + r∗

t+1
 . Let st be the savings of a young per-

son. The budget constraints are then:

such that a young worker chooses between savings and consumption and the old person 
only consumes their savings.

Combining the budget constraints (3 and 4) with second period utility (2) and rewriting the 
the utility function of the young person (1) we get the young person’s maximization problem:

which has a solution of

(1)V1,t = maxc1,t

(
(1 − �)c1−�

1,t
+ �Et(V

1−�
2,t+1

)
1−�

1−�

) 1

1−�
.

(2)V2,t = (1 − �)
1

1−� c2,t.

(3)c1,t + st =wt,

(4)c2,t+1 =e
�t+1 (1 + r∗

t+1
)st,

V1,t = maxc1,t

(
(1 − �)c1−�

1,t
+ �(1 − �)(wt − c1,t)

1−�
(
1 + r∗

t+1

)1−�
Et(e

(1−�)�t+1 )
1−�

1−�

) 1

1−�
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where ŝ(r∗
t+1

) is the savings rate out of present income. With �t+1 i.i.d. the function ŝ is 
time-independent.

Further, consumption in the first period of life is given by

and the (stochastic) consumption in second period is:

With � → 1 , preferences are logarithmic and the savings rate out of income is ŝ = 𝛽∕(1 + 𝛽) 
and independent of expected return and the variance of �t+1 . Consider an increase in the 
expected return, r∗

t+1
, which lowers the relative price of future consumption. When the EIS 

is less than 1 ( 𝜎 > 1 ), this substitutes consumption towards the young age, and lowers sav-
ings: ŝ′ < 0 . Further, a riskier �t+1 for constant Ete

�t+1 reduces Et(e
(1−�)�t+1 )

1

1−� , and for 𝜎 > 1 
this increases savings. These effects are reversed when 𝜎 < 1.

Given the uncertainty, assets with different risk profiles will have different expected 
returns. In particular, the risk-free rate will be lower than r∗

t+1
 . To price these assets we employ 

a convenient tool from finance, the stochastic discount factor (Epstein & Zin, 2013). It is a 
generalization of the relative marginal utility of consumption between periods:

The first equality is the general expression for the stochastic discount factor with Epstein-
Zin preferences (see FG). The second equality utilizes the structure of the two period 
model: V2,t = (1 − �)

1

1−� c2,t . The third equality substitutes for c2,t+1 using Eq. (7).
To see the utility of this, consider an asset with a stochastic outcome Ωt+1 . The stochastic 

discount factor can price any such asset, traded or not, as follows:

The intuition is that Mt+1 records the marginal discounted utility value of a payout in each 
state and PΩ

t
 is the expected value of these payouts. If the economy had no uncertainty 

the stochastic discount factor would be: Mt+1 = �
(
c2,t+1∕c1,t

)−� and the rate of return can 
be found from 1 = �(1 + rt+1)(c2,t+1∕c1,t)

−� , the familiar Euler equation. The more general 
expression allows for the marginal value of payouts to vary with the draw of �t+1 . Natu-
rally, the price of the asset that pays (1 + r∗

t+1
)e�t+1 in period t + 1 is 1.

The risk free rate can be thought of as an asset that costs 1 in period t and pays out 1 + r
f

t+1
 

in period t + 1 . Consequently, we can find the value of 1 + r
f

t+1
 which has a price of 1:

(5)st =
1

1 + 𝛽−1∕𝜎(1 + r∗
t+1

)
𝜎−1

𝜎 Et(e
(1−𝜃)𝜒t+1 )

𝜎−1

𝜎

1

1−𝜃

wt = ŝ(r∗
t+1

)wt,

(6)c1,t = (1 − ŝ(r∗
t+1

))wt,

(7)c2,t+1 = e𝜒t+1 (1 + r∗
t+1

)ŝ(r∗
t+1

)wt

(8)Mt+1 = �
( c2,t+1

c1,t

)−�⎛
⎜

⎜

⎜

⎝

V2,t+1

Et(V1−�
2,t+1)

1
1−�

⎞

⎟

⎟

⎟

⎠

�−�

= �
( c2,t+1

c1,t

)−�⎛
⎜

⎜

⎜

⎝

c2,t

Et(c1−�2,t )
1

1−�

⎞

⎟

⎟

⎟

⎠

�−�

= �
( c2,t+1

c1,t

)−�⎛
⎜

⎜

⎝

e�t+1

Et(e(1−�)�t+1 )
1

1−�

⎞

⎟

⎟

⎠

�−�

.

PΩ
t
= Et

[
Mt+1Ωt+1

]
.

(9)
1 = Et

[

Mt+1(1 + rft+1)
]

= Et

⎡

⎢

⎢

⎢

⎣

�
( c2,t+1

c1,t

)−�⎛
⎜

⎜

⎝

e�t+1

Et(e(1−�)�t+1 )
1

1−�

⎞

⎟

⎟

⎠

�−�

(1 + rft+1)

⎤

⎥

⎥

⎥

⎦

=
1 + rft+1
1 + r∗t+1

Ete−��t+1

Et(e(1−�)�t+1 )
⇔

1 + rft+1 = (1 + r∗t+1)
Et(e(1−�)�t+1 )

Ete−��t+1
,
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where we have used Eqs.  (6)–(8). Consequently, the spread between the expected return 
on the risky asset (1 + r∗

t+1
) and the risk-free rate is captured by the properties of the shock 

�t+1 and the risk preferences � . The fraction is always weakly smaller than one such that the 
risk free rate is lower than 1 + r∗

t+1
 . Any parameter that changes 1 + r∗

t+1
 (other than changes 

to the distribution of �t+1 or � ) will proportionally affect the risk-free rate. Consequently, 
when studying the equilibrium below, we can focus on the return on the risky asset and 
find the risk-free rate as a consequence of Eq. (9)

The function ŝ(r∗
t+1

) captures the supply of capital in the economy. In the following, we 
specify the production side which will capture demand for capital as a function of r∗

t+1
 . For 

comparison with FG we closely follow their specification of the production side of the 
economy.

4.2  Production

The final output is produced competitively with a unit measure of types, i ∈ [0, 1] of inter-
mediate input.

where 𝜖 > 1 is the elasticity of substitution between intermediate inputs. The price of the 
final good is normalized to 1 and is used for consumption or investment such that each 
point in time:

where Ci,t is consumption in aggregate of generation i and Xt is total final good spent on 
investment.

Each intermediate input is produced by a unique monopolist with the production 
function:

where ki,t and li,t are capital and labor input of firm i at time t. Zt is an exogenous determin-
istic productivity trend that grows at gZ . St is a stochastic i.i.d. shock to productivity which 
follows:

Capital is accumulated using the final good and a stochastic production function. In par-
ticular, one unit of the final good spent on investment in period t produces Qte

�t+1 units of 
capital in period t + 1 . The technology parameter Qt grows exogenously at gQ . Investments 
goods are produced competitively with the final good, and the price of an expected unit of 
capital is 1∕Qt . Consequently, the accumulation function for the individual firm is:

Due to uniform production technology, the economy easily aggregates to an aggregate pro-
duction function:

Yt =

(
∫

1

0

y
�−1

�

i,t

) �

�−1

,

C1,t + C2,t + Xt = Yt,

yi,t = Ztk
�
i,t
(Stli,t)

1−� ,

St+1 = Ste
�t+1 .

ki,t+1 =
[
(1 − �)ki,t + Qtxi,t

]
e�t+1 .
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where Kt is aggregate capital and Lt is the size of the young generation that grows with gL
.17 Given demand from the final good producer, each intermediate input producer charges a 
markup of 𝜇 ≡ 𝜖∕(𝜖 − 1) > 1 . With zero profits in the final good sector, the total revenue 
for intermediate input producers is Yt . A fraction �−1

�
 of this is the profit of the intermediate 

input producers. The remaining 1∕� goes to labor and capital. Firms do not own the capital 
and hire workers at wages wt and rent capital at the gross rental rate of Rt . All intermediate 
input producers have identical Cobb–Douglas production functions such that:

Furthermore, the law of motion for aggregate capital is:

Consider the return on investment in physical assets. If an investor spends one unit of the 
final good on capital in period t, she will acquire Qte

�t+1 units of capital in period t + 1 . The 
capital will earn �Yt+1

�Kt+1

 per unit of production and the physical depreciation will leave a frac-
tion (1 − �) of the capital left. The price of capital will have decreased to 1∕Qt+1 units of 
final good the following period. Consequently, the gross return on investing in a unit of 
capital is given by:

where the first term is the gross return to capital and the second term corrects for both 
physical and economic depreciation as discussed in Sect. 3. This expression has the same 
risk profile, e�t+1 , as the asset considered in Sect. 4.1. The savings function ŝ(RK

t+1
− 1) can 

therefore be used to determine the savings behavior of young people investing in physical 
capital.

The physical capital is not the only asset in this economy. The intermediate input pro-
ducers command monopoly profits and consequently, equity in these firms has a value. 
Firms pay out dividends of Dt = (� − 1)∕�Yt each period. The price of this asset can also 
be priced using the stochastic discount factor as:

which reflects that the price of equity in period t (after dividends have been paid) must 
equal discounted value of next period’s dividends plus the price of equity next period, Pt+1 . 

Yt = ZtK
�
t
(StLt)

1−� ,

(1 − �)
Yt

�
= Ltwt,

�
Yt

�
= RtKt.

(10)Kt+1 =
[
(1 − �)Kt + QtXt

]
e�t+1 .

(11)RK
t+1

=

(
�Yt+1

�Kt+1

Qt +
1 − �

Qt+1∕Qt

)
e�t+1 ,

(12)Pt = Et

[
Mt+1(Pt+1 + Dt+1)

]
,

17 FG allow for a labor force participation of less than 1 but find that this has no significant effect on the 
real interest rate. In the present setting with overlapping generations, we could introduce a share of the 
young generation that does not work. This would increase notational complexity with no additional insight 
and we do not pursue this.
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With a unit mass of firms Pt is both the price of a single firm and total value of equity. That 
is, firms live forever, and each period they are sold from the old to the young.

Without additional structure, it is difficult to price equity in general. In the next 
section, we follow FG and specify a risky balanced growth path, which can be solved 
analytically.

4.3  The risky balanced growth path

To solve the model we conjecture that at each point in time the equilibrium of the model 
features:

with Xt = TtStx
∗ and wt = TtStw

∗ and other aggregate variables analogously defined (the 
definition of k∗ using Qt−1 is notationally convenient and is immaterial). The price of equity 
will likewise follow Pt = TtStp

∗ . This implies that output of the economy, Yt , will follow a 
deterministic path Tt and a stochastic path governed by the realizations of �t and thereby St. 
The deterministic growth rate, T, is given by Tt = LtZ

1

1−�

t Q
�

1−�

t  and grows as:

Using the structure of the risky balanced growth path along with the price of equity 
(Eq. 12) we get:

from which it follows that the riskiness of equity investments equal those of capital from 
Eq. (11) (they are scaled by e�t+1 ). Consequently, the return must be the same. Using the 
expression for the stochastic discount factor, Mt+1 , from Eq. 8 we can further find:

where r∗ is the expected return on both equity and physical capital. This is a Gordon for-
mulae: The value of equity equals the discounted value of future profits where the discount 
factor is the expected return on the risky asset corrected for the growth of output. While the 
dividend share of output remains constant at (� − 1)∕� , the value of equity relative to the 
output is not fixed, but depends on the r∗ . This will be important in what follows.

Finally, we use the structure of the risky balanced growth path along with (11) to find 
the value of y∗∕k∗:

(13)Yt =TtSty
∗,

(14)Kt =TtStQt−1k
∗,

(15)C1,t =
(
TtStc

∗
1

)
,

(16)C2,t =
(
TtStc

∗
2

)
,

1 + gT = (1 + gL)(1 + gZ)
1

1−� (1 + gQ)
�

1−� .

Pt = Et

[
Mt+1(Pt+1 + Dt+1)

]
⇔ 1 = Et

[
Mt

(
1 +

� − 1

�

y∗

p∗

)
(1 + gT )e

�t+1

]
,

(17)p∗ =
(1 + gT )

r∗ − gT

� − 1

�
y∗,
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Section 4.1 solved for the savings of the young as a function of the return on the risky asset 
r∗ . This section derived expressions for the two possible assets to invest in, physical capital 
and equity. In the following section we solve for the equilibrium and thereby determine the 
risky rate r∗ . We derive the derivative of r∗ as a function of (� + gQ)∕(1 + gQ) , the total rate 
of depreciation.

4.3.1  Equilibrium in the savings market

Each period the young use their savings to purchase the two assets from the old. The 
remaining savings are used for new investment. Consequently, the equilibrium must be:

where the left hand side is total savings by the young measured in units of the final good. 
The right hand side uses Eq. (10). The multiplication by e−�t+1 comes from the fact that the 
value of capital the following period is stochastic and Q−1

t
 is the price of capital and invest-

ment in period t.
With this in hand we proceed with the following Proposition which establishes the 

equilibrium y∗∕k∗ and the derivative wrt �TOT ≡ (� + gQ)∕(1 + gQ).

Proposition 1 The equilibrium level of output to capital y∗∕k∗ and the expected return on 
capital r∗ are given as the solution to:

where the derivative of the expected return on capital with respect to total depreciation, 
�TOT , (holding total growth of the economy, gT , constant), is given by:

(a) if preferences are logarithmic,  � = 1 , and market competitive, � = 1 , the expected 
return on capital changes one-for-one with depreciation:

(b) if � = 1 and 𝜎 > 1 , then ŝ�(r∗) < 0 and a decrease in the expected return increases sav-
ings and leads to a further decrease in expected returns:

1 + r∗ =

(
�y∗

�k∗
+

1 − �

(1 + gQ)

)
⇔ r∗ =

(
�y∗

�k∗
−

� + gQ

1 + gQ

)

(18)ŝ(r∗)
1 − 𝛼

𝜇
Yt = Pt +

(1 − 𝛿)Kt

Qt

+ Xt = Pt + Kt+1Q
−1
t
e−𝜒t+1 ,

(19)
y∗

k∗
=

(1 + gT ){
ŝ(r∗)

1−𝛼

𝜇
−

(1+gT )

r∗−gT

𝜇−1

𝜇

}

(20)1 + r∗ =

(
�y∗

�k∗
+

1 − �

1 + gQ

)
,

dr∗

d𝛿TOT
= −

1{
1 +

(𝛼∕𝜇)

1+gT
(y∗∕k∗)2

(
ŝ�(r∗)

1−𝛼

𝜇
+

(1+gT )

(r∗−gT )
2

𝜇−1

𝜇

)} .

dr∗

d�TOT
= −1,
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with 0 >
dr∗

d𝛿TOT
> −1 if 𝜎 < 1

(c) For 𝜇 > 1 , a decline in the expected return on assets diverts savings towards equity, 
and reduces the capital stock. In particular, for � = 1 and 𝜇 > 1

such that there is a lower than one-to-one effect on the risky rate of return.

Proof Equation (19) follows from Eq. (18) where we impose the structure of the risky bal-
anced growth and use (17).

The proposition demonstrates that the effect of depreciation is equivalent, regardless 
of whether it is physical depreciation, � , or economic depreciation (1 + gQ) = Qt+1∕Qt.18 
Consider first the special case of logarithmic preferences, � , where markets are competi-
tive, � = 1 , and there are no profits. In this case, ŝ = 𝛽∕(1 + 𝛽) and the return on capital is 
given by:

which shows that the expected return on capital changes one for one with depreciation, 
�TOT since y∗∕k∗ , is constant (Eq. 19 with � = 1 and ŝ = 𝛽∕(1 + 𝛽) ). The risk free rate falls 
in proportion as given by Eq. (9).

When 𝜎 > 1 , the lower interest rate increases savings, ŝ′ < 0 , which reduces y∗∕k∗ and 
reduces the marginal product of capital. This further decreases r∗ , which reduces more than 
one-for-one with depreciation. When 𝜎 < 1 this effect is reversed and the decline is less 
than one-for-one, though still negative. This demonstrates the importance of the EIS for the 
effect of depreciation on the return on assets. This effect will also be present in the more 
general version of the model with multiple periods below.

When 𝜇 > 1 there is an additional effect from the reallocation of savings toward equity. 
Equation (19) can be rewritten as

which shows that physical capital equals savings of the young less the value of equity. Con-
sider � = 1 , such that savings of the young do not depend on r∗ : An increase in depreciation 
lowers r∗ , which increases the value of equity from Eq. (17). Consequently, when the young 
use their savings to purchase assets from the old, the higher price of equity leaves less for 
physical capital and therefore investments. Equilibrium y∗∕k∗ rises and compensates for 

dr∗

d𝛿TOT
< −1,

dr∗

d𝛿TOT
> −1,

r∗ =
(1 + gT )

�

1+�
(1 − �)

− �TOT ,

(21)ŝ(r∗)
1 − 𝛼

𝜇
−

(1 + gT )

r∗ − gT

𝜇 − 1

𝜇
=

k∗

y∗
(1 + gT ),

18 These comparative statics are done for given gT , and consequently an increase in gQ would have to be 
combined with a decline in gZ.
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some of the decrease in r∗ . This shifts of savings between physical capital and equity is 
important for the quantitative assessment of rising depreciation on r∗ below.

Before proceeding, we discuss the uniqueness of the steady state equilibrium (naturally, 
there is always a steady state with y∗ = k∗ = 0 ). When the EIS is less than one—as in our 
preferred specification—the possibility of multiple steady states potentially arises (Galor, 
1992). We check in our quantitative assessment below that the steady state is unique for our 
estimated set of parameters.19

However, with the existence of equity, even if the aggregate supply of savings depends 
negatively on r∗ , the redistribution of savings away from equity (when r∗ rises) could still 
leave savings for physical capital higher. This condition is easily met in our quantitative 
application in the following.

In the following section we distinguish between these findings and those of a Ramsey 
model.

4.3.2  Ramsey versus OLG

A central point of the present paper is the distinction between these results and those of 
a model with a representative agent. Therefore, compare the results in Proposition 1 with 
those of a model with a representative agent (as in FG). On the risky balanced growth path 
of a Ramsey model, the risky rate is given by:

which is the familiar Euler equation with growth in consumption of the representative 
agent of (1 + gT )∕(1 + gL)—the expected growth rate of the economy corrected for popula-
tion growth—with an additional term that captures uncertainty.20

Consequently, the model with the representative agent leaves no room for depreciation 
in the determination of the return on capital, the supply curve of capital is entirely hori-
zontal and the stock of capital adjusts to ensure the same return net of depreciation. This is 
illustrates in Fig. 4, which shows the equilibrium market for physical capital. In Panel a, we 
plot the equilibrium from the Ramsey model. The demand for capital ( k∗∕y∗ ) as a function 
of r∗ is given Eq. (20) and the supply of physical capital comes from Eq. (22) which does 
not depend on k∗∕y∗ . The interest rate is given entirely by the supply curve and does not 
depend on � : An increase in � shifts the demand curve, reduces k∗∕y∗ and leaves r∗ remains 
constant. Panel b shows the corresponding equilibrium for the OLG model. The demand 
for physical capital is the same, but the supply curve is given Eq. (19) which has a slope of:

(22)1 + r∗ = �−1
(
1 + gT

1 + gL

)�[
Ee(1−�)�t+1

] �−1

1−� ,

19 The issue of multiple steady states arises when the slope of the supply curve of capital is negative and 
therefore potentially has multiple intersections with the demand curve for capital. The existence of markups 
generally increases the slope of the supply curve and in our quantitative assessment the supply curve is 
always upward sloping. Therefore, no multiple steady states arise.
20 Equation (22) can also be derived from the stochastic discount factor. For the representative agent, the 
analogous calculations as for Eq. (8) can be used to find:

Using this to price the asset with return (1 + r∗)e�t+1 as 1 = Et

[
Mt+1(1 + r∗)e�t+1

]
 we recover Eq. (22).

Mt+1 = �

(
1 + gT

1 + gL

)−�

e−��t+1
[
Ee(1−�)�t+1

] �−�

1−� .
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The slope of this curve is generally ambiguous. With � = 1 and � = 1 it is a vertical line at 
a specific k∗∕y∗ . For 𝜇 > 1 and ŝ�(r) not “too” negative it will be upward-sloping as shown 
in the figure. The figure further shows the effect of an increase in � which will now affect 
r∗ . If the equity effect is large or the response of savings to the interest rate, s�(r∗) are large 
the curve is flatter and a decline in r∗ lowers k∗∕y∗ which dampens the effect of a decline in 
� on r∗.

The present paper makes a sharp distinction between savings for life-cycle motives and 
the representative agent framework. In practice, bequests between generations could to 
some extent bridge the gab between the two. In Appendix 1 we extend a simplified ver-
sion of this model (with no risk or monopoly power) to include a bequest motive. We show 
that in general a higher depreciation will continue to reduce r∗ , although to a less extent 
depending on the strength of the bequest motive.

Having established the qualitative implications of an OLG framework, we proceed to 
quantitatively estimate our model. We will keep most of the structure but replace ŝ(r∗) with 
the general savings function of an OLG model with longer life spans.

5  A multi‑period OLG model and quantitative assessment

In the following, we quantitatively assess the importance of increased depreciation. To 
contrast the role of the overlapping-generation framework with that of a representative 
agent, we keep our empirical approach deliberately close to that of FG. They use the peri-
ods 1984−2000 and 2001−2016 and use 9 moments of data to estimate the model, sepa-
rately for each time period, to exactly identify 9 parameters: (a) the risk price �∗ = 1

1+r∗
 , 

(b) risk modeled as a disaster �,21 (c) the markup � , (d) the physical depreciation of capital 
� , (e) the Cobb–Douglas parameter, � , (f)–(h) the growth rates of total factor productivity, 
gZ , investment-specific progress, gQ , and population growth gL and (i) the labor force par-
ticipation rate. The matched moments are: (i) measured gross profitability (including return 
on capital),22 (ii) the measured gross profitability, (iii) the investment-capital ratio, (iv) The 
risk free rate, (v) the price-dividend ratio, (vi)–(viii) the growth rates of population, TFP 

(23)
dr∗

d(k∗∕y∗)
=

1 + gT

ŝ�(r∗)
1−𝛼

𝜇
+

(1+gT )

(r∗−gT)
2

𝜇−1

𝜇

.

21 FG model risk as a three-point distribution of �t+1 with (a) a disaster: �t+1 = 0 with probability (1 − 2� ), 
(b) xt+1 = log(1 − b) with probability � and c) �t+1 = log(1 + bH) with probability � . They set eb = 0.85 
estimate � in the model and set bH such that Ee�t+1 = 1 . We follow this approach, but the main conclusions 
of our analysis do not depend on this particular choice of a risk profile. (p denote the probability in their 
paper, but we use � to avoid confusion with the value of equity, p∗)
22 FG build their model slightly differently, in that they let firms own the capital stock such that gross prof-
itability includes pure profits and return to capital. In such a model the only asset available for savings 
would be firm equity (which is then a claim on both monopoly rents and physical capital). Tobin’s Q would 
give

which is equation (24) in their paper. This would be the only asset to invest in such that in equilibrium 
ŝ(r∗)

1−𝛼

𝜇
y∗ = p∗ which gives the same equilibrium as in Proposition 1.

p∗∕k∗ = (1 + gT )

(
1 +

� − 1

�

r∗ + � + gQ

r∗ − gT

)
,
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and investment prices, and (iix) the labor force participation. They then discuss how varia-
tion in parameters drives the change in the rates of return.

Our approach differs from FG in three ways: First, we exclude their ninth moment: 
employment/population and, correspondingly, their parameter to capture this. Second, we 
focus on their first period 1984−2000 and perturb the rate of depreciation directly based on 
the change for US data from Sect. 2.2. Third, we estimate �∗ = 1

1+r∗
 instead of �.23 In the 

representative agent setting, neither of these changes significantly affect their conclusions 
(see Appendix 1). We will therefore also exactly identify our eight parameters. What is 
essential for our purposes is that the identification of these eight parameters is identical in 
the two models. The only difference between the two is how the equilibrium return �∗ is 
tied to the fundamental parameter �.

In a representative agent model the relation between � and �∗ comes from the stochastic 
discount factor of the representative agent (Eq. 23):

whereas in the overlapping-generation model the link is given from combining our Eqs. 
(19) and (20):

where Λ(r∗, �) is the generalization of ŝ(r∗, 𝛽) to more generations (derived below). We 
make explicit the dependency on both r∗ and � (though naturally both ŝ and Λ depend on a 
broader set of parameters). The left hand side is the required y∗∕k∗ level consistent with an 
expected return of r∗ and the RHS is y∗∕k∗ level arising from the savings behavior.

(24)�∗ =
1

1 + r∗
= �

(
1 + gT

1 + gL

)−�[
Ee(1−�)�t+1

] 1−�

1−� ,

(25)
�

�

(
1 + r∗ −

1 − �

Qt+1∕Qt

)
=

(1 + gT ){
Λ(r∗, �)

1−�

�
−

(1+gT )

(r∗−gT )

�−1

�

} ,

a b

Fig. 4  Equilibrium in the market for physical capital Note: Figure shows the equilibrium in the market for 
physical capital. In both figures the demand for physical capital is given by gross return on capital less 
economic and physical depreciation. In the Ramsey model, the supply of physical capital is horizontal and 
given by the Euler equation of the representative agent. In the OLG model, the slope of the supply of physi-
cal capital comes from the savings of the young less the value of equity. In general the slope is ambiguous 
and given by Eq. (23)

23 The code from FG available on their website conveniently allows for the estimation of �∗ instead of �.
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Use Eq.  (24) to define the function f RA(�, r∗) ≡ �
(

1+gT

1+gL

)−�[
Ee(1−�)�t+1

] 1−�

1−� −
1

1+r∗
 and 

note that f RA(�, r∗) = 0 defines � for any given set of parameters and r∗ . Similarly, use Eq. 
(25) to define f OLG(�, r∗, �TOT ) = 0, which defines � for the model with overlapping gener-
ations. Importantly, f OLG is a function of �TOT , whereas f RA is not (again, holding the 
growth rate of the economy constant).

In the OLG model, the effect of �TOT on the the real interest rate (holding the fundamen-
tal parameter � constant), is given by:

where f OLG
�TOT

 denotes the derivative of f OLG wrt �TOT and analogously for r∗.
In order to take this expression to the data, we note a practical problem: whereas the 

representative agent model of FG is estimated on yearly data, our specification of the OLG 
model features a lifespan of two periods, and consequently substantially longer periods. We 
therefore extend our model to multiple periods.

5.1  Extending the model to multiple periods

In the following, we allow our overlapping generations model to include multiple periods. 
In particular, we let an individual lifespan be T periods (years) out of which an individual 
works for the first G periods. We abstract from individual wage profiles and assume that 
any individual who works at time t earns the wage wt . The work force is Lt and continues 
to grow at gL . Lt,k is the size of the workforce aged k at time t, such that Lt =

∑G

k=1
Lk,t.  We 

leave the retirement age of an individual, G, exogenous, though endogenizing this would be 
an interesting extension.24

The solution to this model inherits the stable properties of the risky balanced growth 
path. In particular, in the appendix we show that:

Proposition 2 Extend the overlapping generation model such that individuals live for T 
periods and earn income for the first G periods. All working individuals earn wt . Then 

(a) There exists an equilibrium with a risky balanced growth path where total 
wages, savings and output are proportional to TtSt Individual wages grow at 
(1 + g) = (1 + gT )∕(1 + gL).

(b) Let Wt,k be the financial wealth of an individual born at time t of age k (such that 
Wt,1 = 0 for a “new” individual with k = 1 ). Let Ŵt,k be total wealth, including future 
discounted wage income (including the current period t): 

�r∗

��TOT
=

f OLG
�TOT

f OLG
r∗

,

24 Carvalho et al. (2016) analyze the effect of the changing demographics, in particular longer lifespan, on 
the rate of return. They do so in an OLG model with young and old, but a stochastic transition from young 
to old and from old to dead for individuals. Longevity is modeled as a lower probability of dying. They find 
that increased savings from longer lifespans significantly affected the rate of return. We view the two OLG 
modeling approaches as complementary.
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 where r∗ is the discount factor using the return on the risky asset and the individual 
only earns income if they are still working, k ≤ G.

(c) On a risky balanced growth path total wealth of an individual of age k is given by 

 and individuals consume a time-independent, but age-dependent share of remaining 
total wealth: (1 − ŝk)Ŵs,k, where ŝk is function of the return on assets �∗ and is given 
iteratively for k ∈ {1,… , T − 1} as: 

 with �̂�T = (1 − 𝛽) and ŝT = 0 . For � = 1 , ŝk is independent of r∗.
(d) The financial wealth of an individual aged k at time t is given by: 

 where �k(r∗) , the ratio of financial wealth of an individual aged k to current wages is 
independent of time.

(e) Total savings in the economy at time t are proportional to total wages and are given 
by: 

 where Lt,k is the size of the population aged k at time t and Λ is not a function of t.

Proof See Appendix 1  ◻

The proposition extends the savings function of Eq.  (5) and replicates the result from 
Sect. 4 when T = 2 and G = 1 . Though the expression is explicit (see the appendix), evalu-
ating it algebraically is complicated, and we solve for it numerically using the calibrated 
parameters below. In particular, based on a start of work life at age 20 we set T = 65 and 
working life G = 40.25

In Fig. 5 we plot the savings—that is without net present value of future wages—of a 
cross section of individuals and the increase in the expected return on assets from 6.6 to 

Ŵt,k = Wt,k +

G−k+1∑
m=1

wt

[
(1 + g)

1 + r∗

]m−1
,

Ŵt,k = TtStL
−1
t
ŵ∗
k
,

ŝk(r
∗) =

1

1 + (1 − 𝛽)1∕𝜎
(
�̂�k+1

)−1∕𝜎
(r∗)

𝜎−1

𝜎 𝛽−1∕𝜎E
(
e(1−𝜃)𝜒t+1

) 𝜎−1

𝜎

,

�̂�k(r
∗) =

(
(1 − 𝛽)

(
1 − ŝk

)1−𝜎
+ �̂�k+1(r

∗)
1−𝜎

(
ŝk
)1−𝜎

𝛽E
(
e(1−𝜃)𝜒t+1

) 1−𝜎

1−𝜃

)
,

Wt,k = �k(r
∗)wt,

T�
k=1

�k(r
∗)Lt,kwt =

∑T

k=1
�k(r

∗)Lt,k∑G

k=1
Lt,k

G�
k=1

Lt,kwt ≡ Λ(r∗)
(1 − �)

�
Yt,

25 Given a starting life of 20, the value of T at 65 might seem high. Although the quantitative results of the 
effect of depreciation on the risk-free rate below depend only little on this assumption, a lower T gives too 
little aggregate wealth in the economy to match the data without a very high � (above 1). Any extension 
with bequests, uncertainty about time of death, housing, or direct utility of wealth would also increase sav-
ings.
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7.6%.26 Λ is the sum of generational savings where the weight is the average size of each 
generation. With no population growth, Λ is the integral under the plot. We show this fig-
ure for a range of values for the EIS ( 1∕�).

Panel a shows a high value of the EIS ( � = 1∕2 ). The panel shows initial financial 
wealth of 0 with the generations at age 40 holding the highest stock of wealth. After retire-
ment, savings decline and reach 0 at age 65. The figure is scaled by wage earnings (it 
shows �k ) of a working individual such that an individual at age 40 has savings of around 
8 times annual earnings for r∗ = 6.6% (the estimated value below). We consider a 1 per-
centage point increase in the expected return. The decrease in the relative price of future 
consumption, pushes consumption towards the future and increases savings. With a high 
value of EIS this effect is large and the savings profile across generations increases sub-
stantially. Panel b plots the same figure, but for an EIS considerably lower than 1 ( � = 3 ). 
The substitution is now towards current consumption, but there is a contrary effect: the 
future discounted value of future labor income declines with a higher return which lowers 
current consumption. For these two panels these effects almost balance, and aggregate sav-
ings only increase a small amount. In panel c with � = 4 there is a small decline in aggre-
gate savings.

With aggregate savings Λ in hand we proceed to find the effect of an increase in depre-
ciation on the risk-free rate.

5.2  The effect of depreciation on the risk free rate

We proceed to run the estimation procedure of FG. They consider two time periods 
1984−2000 and 2001−2016 . The procedure considers the economy to be in steady state in 
each of these periods and compares the change in parameters between the two periods. We 
base our parameter estimates on the period 1984−2000 (the first period of FG) since most 
of the increase in the depreciation rate happened in this period.27 Since we do not calibrate 
a labor force participation rate, we have 8 parameters to which we add an equation to deter-
mine � . This is an updated version of Eq.  (25), with Λ replacing ŝ to allow for multiple 
generations:

Table  1 shows the values of the corresponding parameters, including the estimate of � . 
�∗ is estimated indepedently of � , and we show three values of � for different values of � . 
(note that � , gL , gZ and gQ have all been scaled by 100).

We use Eq. (26) to estimate the effect of a change in �TOT on r∗ . We do so for a range of 
� values. That is, for each value of � we calculate the implied � and differentiate equation 

(26)

(
1 + r∗ −

1 − �

1 + gQ

)
�

�
=

1 + gT{
Λ(r∗, �)

(1−�)

�
−

(1+gT )

(r∗−gT )

�−1

�

} .

26 Note, this does not equal the savings profile of a given individual throughout her lifetime. This is so for 
two reasons: (i) people of older generations will have accumulated financial savings out of past (lower) 
wages, and (ii) this figure shows total savings for each generation, and correspondingly younger generations 
are bigger.
27 Admittedly, there is an uncomfortable tension between Fig. 2 which shows a sizable increase in the rate 
of deprecation over the time period 1984−2000 and the estimation procedure which considers these param-
eters to be constant. Solving the model out of the steady state would be considerably more complicated. We 
believe that quantitatively similar effects would still be in play.
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(26) with respect to �TOT holding � constant. The results are shown in Fig. 6. The intuition 
for the effect remains the same as in Proposition 1.

To illustrate this we consider both the case of a markup as estimated from the data, 
� = 1.08 and the corresponding model without markups ( � = 1).28 For each case we con-
sider a range of � . Panel a shows the results for � = 1.08 with all other parameters as 
in Table 1. We see that the extended OLG model replicates the qualitative effects of an 
increase in depreciation and continues to show substantial effects from increased deprecia-
tion on the return on capital. However, this effect strongly depends on � for the same rea-
son as illustrated in Fig. 4: A high EIS makes savings more sensitive to changes in r∗ and 
creates a flatter supply curve of physical capital. For the estimated value of � = 1.08 and a 
value of � = 4 the decline in deprecation of around 5/4 from 1970 to the early 2000s can 
explain around 5

4
×

1

4
=

5

16
 , around 30 points the decline in the real return on capital rate. If 

� = 1∕2 savings of young people are considerably more sensitive to r∗—the supply curve 
analogous to Fig. 4b for multiple generations is much flatter—and the effect of � on r∗ is 
negligible, around 7 points.

Panel b demonstrates the quantitative dependence on � , the markup that allows for 
equity. When � = 1 , savings are only invested in physical capital and the implied effect on 
the return to capital is around 90 points for � = 4.

Finally, we use Eq. (9) and take logs with the approximation that log(1 + rf ) ≈ rf  to find 
an expression for the risk-free rate to get:

where log
[

Ete
−��t+1

Et(e
(1−�)�t+1 )

]
= 0.03 with our set of estimated parameters. Consequently, for given 

risk characteristics and preferences, the risk-free rate follows the return on equity, and 
Fig. 6 applies equally to the risk-free rate.

(27)rf ≈ r∗ − log

[
Ete

−��t+1

Et(e
(1−�)�t+1 )

]
,

Fig. 5  Accumulated financial savings Note: Figure shows a cross-section of financial savings for each gen-
eration relative to yearly earnings of currently working person. Each panel presents a different elasticity of 
intertemporal elasticity and the effect on savings from an increase in the return on the risky asset, r∗

28 We keep all other parameters constant when we set � = 1 . Consequently, this set of parameters does not 
match the empirical moments, in particular the profit share.
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Of course, r∗ is the marginal product of physical capital, which is not easily measured 
in the data. An easier object to measure is the average product of capital. Caballero et al. 
(2017) discuss trends in the risk free rate and the average return to capital. To relate to this 
literature, in the following we calculate the average return on capital in our model. We 
change our model and let firms own the stock of capital. As stated in footnote 23 this alter-
native model is isomorphic to our preferred specification. The sum of the average gross 
(including depreciation) product of capital + profits is given by:

but in the literature (i.e. Eggertsson et. al., 2021) the average product of capital is measured 
net of depreciation (ideally both physical and economic) as:

In the steady state the ratio of y∗∕k∗ is given by Eq. (20) which we use to write an expres-
sion for the APK over the risk free rate as:

Empirically, APK has remained relatively constant while rf  has declined. This frame-
work allows the spread between the two to arise from either monopoly rents or the risk 

�y∗

�k∗
+

1 − �

�

y∗

k∗
=

(
� + 1 − �

�

)
y∗

k∗
,

APK =

(
� + 1 − �

�

)
y∗

k∗
−

gQ + �

1 + gQ
.

APK − rf =
1 − �

�

(
r∗ +

gQ + �

1 + gQ

)
+ r∗ − rf .

Table 1  Estimated parameters for 1984–2000

∗The parameters � , g
L
 , g

Z
 , and g

Q
 have been scaled by 100

�(� = 1∕2) �(� = 3) �(� = 4) �∗ � � � � g
L

g
Z

g
Q

0.95 .98 0.99 0.94 1.08 0.04 2.1 0.24 0.6 1.30 1.77

Fig. 6  Derivative of risky return, r∗ , wrt total depreciation �TOT
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premium.29 depreciation ( qQ + �)∕(1 + gQ) only affects the spread in that it increases 
y∗∕k∗ . Both Eggertsson et al. (2021) and Caballero et al. (2017) as well as a host of other 
papers find that increasing profits have played an important role in keeping APK constant 
despite the decline in risk free rate.

We have shown that the deviations of the Ramsey model from the OLG model depend 
strongly on the EIS: with a high value, savings are very sensitive to changes in the interest 
rate, and the OLG quantitatively mirrors the Ramsey model. With a low EIS, the supply 
curve is steeper, and changes in the demand for physical capital can have substantial effects 
on the return on capital and with it the risk free rate.

5.2.1  Empirical estimates of the elasticity of intertemporal substitution

There is a vast literature on EIS estimates. Havránek (2015) surveys 169 published studies 
and finds a mean estimate of around 0.5 ( � = 2 ). He argues that there is substantial selec-
tive reporting as scholars discard negative or insignificant results. When he corrects for 
this, he finds a mean estimate of micro studies of 0.3−0.4 with essentially zero from macro 
studies. Yogo (2004) argues that studies of the EIS based on the Euler equation suffer from 
weak instruments. In a macro study of 11 countries, he finds an EIS less than 1 and usually 
not different from zero. Best et al. (2020) use the particular structure of the UK mortgage 
market which features discrete jumps and employ methods from public finance on “bunch-
ing”. They find an EIS of around 0.1.

Taken together, these studies suggest that aggregate savings behavior and consumption 
are not highly sensitive to the interest rate, consistent with an upward-sloping supply curve 
in the OLG model. The literature suggests an EIS less than 0.5 and, correspondingly, a 
𝜎 > 2.

6  Conclusion

Judged from the best available evidence, the average rate of capital depreciation has 
increased over the last half-century in the US and it seems likely that this trend is pervasive 
across advanced economies. A decomposition analysis finds that a rising share of capital 
assets featuring relatively high depreciation, such as IT, is chiefly responsible. This devel-
opment is pervasive across sectors.

From a theoretical perspective a rising depreciation rate, whether driven by rising physical 
decay or revaluation, will work to lower the real rate of return in the steady state if aggregate 
savings are only modestly affected by changes in capital income. This amounts to saying that 
if the life-cycle motive is sufficiently important in explaining aggregate savings a rising depre-
ciation rate should work to lower the real rate in the long run. This is in contrast to a model 
with a representative agent, where the Euler equation pins down the return. Our introduction 
of an overlapping-generation framework is relatively malleable. In this paper we focus on the 
real interest rate and rates of depreciation, but our framework could be used to address other 
research questions where the use of a representative agent might be too restrictive.

29 Caballero et al. (2017) have a similar expression but consider a case where measured APK is only net 
of physical depreciation. In this case a higher rate of economic depreciation can also increase the spread 
between the two. Naturally, if APK does not adequately account for depreciation, a rising depreciation can 
also increase the spread.
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Although the relative importance of the life cycle for savings remains an active area of 
research, our calibration suggests that the highlighted mechanism may have contributed sig-
nificantly to the reduction in the risk-free rate since 1970, of around 30 basis points. In addi-
tion to contributing to the secular decline in the real rate, a rising depreciation rate could also 
contribute to a greater spread between the calibrated marginal (or average) product of capital 
and the risk-free real rate of interest.

Capital depreciation reflects both physical decay and revaluation. The revaluation element, 
in turn, reflects that declining investment prices represent a capital loss for capital owners, 
which serves to lower the return ceteris paribus. The present study can thus be seen as adding 
a complementary reason why declining investment prices may lower the real rate of return 
beyond that which has been explored in the literature. Declining investment prices may thus 
be considerable more important in explaining developments with respect to the real rate, in 
totality, than hitherto recognized. If productivity growth in the production of investment goods 
is expected to be above that in the production of consumption goods in the future, a declin-
ing investment price may serve to keep the real rate of return low in the future. Conversely, if 
the relative price of investment goods stabilizes, such that the rate of relative price decline is 
smaller, our model would predict a future increase in the rate of return.

7  Data repository

All code for the empirical figures and the simulation are available at https:// github. com/ mgols 
en/ real_ rate_ depre ciati on.

Appendix

A Data appendix

The following describes in further details the data behind the average depreciation rates. It is 
based on the current-cost net stock of assets and the real-cost net stock of assets (see page M-7 
in U.S. Department of Commerce. Bureau of Economic Anayasis, 2003). The real stock of 
assets of type i in year t is given by KR

i,t
 . This is measured in prices of a reference year, in this 

case 2017. The BEA then calculates the current cost value of the assets by KN
i,t
= Pi,t × KR

i,t
 , 

where Pi,t is the corresponding price index. KN
i,t

 then measures the price of the stock at time t 
and not in 2017. The depreciation rate for each capital type, �i,t , can be found by taking total 
depreciation and dividing by the stock of assets. One can then calculate the average deprecia-
tion rate—by nominal and real weights, respectively—as:

https://github.com/mgolsen/real_rate_depreciation
https://github.com/mgolsen/real_rate_depreciation
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such that �N
t

 can change due to reallocation of KN
i,t

 across asset types or �i,t (as shown in 
Panel b of Fig. 3). �R

t
 can also change due to different paths in Pi,t . As argued in the main 

body of the paper, �N
t

 is preferable. To illustrate this, consider panel 7a. This shows three 
series, all of which intersect in 2017, the baseline year for real stock calculations. First, it 
shows the depreciation rate weighted by the real stock of value (Actual series). This cor-
responds to Panel b of Fig. 1, though using more detailed BEA data instead of the PWT. 
To illustrate the problem with using real values, consider a hypothetical economy in steady 
state: There is no change in the nominal share of different equipment types and the depre-
ciation rate for each equipment type is held constant. There is, however, different growth 
rates for the price index of different capital types. The depreciation rate from the perspec-
tive of agents is constant, but using real capital to measure the depreciation rate will enduce 
a bias in the measure.

We create two counterfactual data series. First, we consider a hypothetical series in 
which the weights of nominal capital KN

i,t
∕
∑

i K
N
i,t

 is constant at its 2017 level throughout 
the period; changes in �R can come only from changes in asset-specific depreciation or 
different growth rates in price indices. The figure shows this alternative series as “Hold-
ing nominal capital shares constant”. Since nominal asset growth has been the highest for 
assets with a high depreciation rate, this implies a higher depreciation rate in 1970; an 
increase from the actual series of about .5 points. Second, we consider a counterfactual 
world where both the relative weight of nominal capital and the depreciation rate are held 
constant at 2017 values, such that only the effect of Pi,t is present. For this series, the depre-
ciation rate weighted by real capital grows by around 1.5 points from 1970 to 2017. This 
illustrates that in a counterfactual world with no change in relative nominal assets values 
or asset-specific depreciation rates, the average depreciation rate would still show growth. 
Due to the approximate exponential feature of price indices, this series will also appear 
exponential.

Panel b shows a scatter plot across the different asset types. It shows the average yearly 
price change for each asset plotted against the (arithmetic) average of depreciation across 
the time period (the very high depreciation rates are found within software). There is a 
clear negative relationship between the two: assets with the highest depreciation rates have 
seen the highest declines in prices and consequently have artificially little weight early in 
the time period when using the real stock of assets.

B A model with a bequest motive

We present a simple version of our 2-generation model, where we allow for bequests. We 
abstract from monopoly rents and uncertainty and focus on logarithmic preferences. We 
also let all generations have the same size, Lt = 1
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B.1 Consumers

Individuals live for two periods. In the first period of life, they supply a unit of labor ine-
lastically for which they receive a wage. They receive bequests and save. During old-age 
individuals consume and pass on bequests to their heir from their savings during youth. 
Lifetime utility for a generation born at time t is

where c1,t is consumption during youth and c2,t is consumption during retirement, bt+1 
is bequests while � represents time preferences. Per period utility is logarithmic, which 
implies that the savings rate will be independent of the real rate; we discuss below how our 
results are likely affected if this assumption is relaxed.

The bequest motive is captured by joy-of-giving preferences, and � parameterizes the 
strength of the bequest motive. An alternative modeling approach is to assume that house-
holds behave dynastically, deriving utility from the utility of the descendants and so on. 
But this will produce a model where the aggregate savings behavior is isomorphic to an 
infinitely lived consumer if bequests are passed on, which implies that steady-state savings 
solely depend on capital income (Barro, 1974). In order to produce behavior where both 
wages and capital income matter, we, therefore, resort to the joy-of-giving specification.30

The budget constraints are

where the assumption that each generation is of equal size eliminates any need to nor-
malize first period bequest. Accordingly, the first period income comprises wage income, 
wt , and bequest, bt . Second period income consists of savings during youth with interest, 
where rt+1 is the real rate of interest.

ut = ln c1,t +
1

1 + �
(ln c2t+1 + � ln bt+1).

c1t + s
t
= w

t
+ b

t
≡ I

t
,(

1 + r
t+1

)
s
t
= c2t+1 + b

t+1,

Fig. 7  The rate of depreciation and the real stock of assets (1970–2020). Note: Panel a shows the average 
depreciation rate weighted by the real stock of assets. It performs two counter-factuals: Holding the nominal 
share of assets constant at 2017 values. Holding both nominal shares and depreciation rates constant for 
each asset type. Panel b shows the average depreciation rate against the average price decline (23)

30 The assumption that consumer welfare depends on terminal wealth, or bequest, goes back to Yaari 
(1964). The empirical relevance of a bequest motive is well established, albeit the strength of the motive, 
relative to the life-cycle motive, is an active area of research. See De Nardi et al. (2016).
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Maximizing life-time utility subject to these constraints leads to the following solu-
tions for first period savings and late-in-life bequest

Log preferences imply that the savings rate is independent of the real rate of return. The 
presence of a bequest motive ( 𝜂 > 0 ) increases the savings rate compared to a standard 
two-sector OLG model. In addition, consumers divide their accumulated lifetime wealth 
between their own consumption in old age and the bequest of their offspring; the split 
becomes more favorable to the next generation if � increases in size.

Taken together, this behavior implies, in contrast to a our baseline model with loga-
rithmic preferences, that the real rate of return will influence the process of capital accu-
mulation. A higher real rate increases accumulated savings, which translates into greater 
bequests and thus the income of the next generation, which then fuels more savings. 
The strength of this channel depends on the size of � . As a result, both wage income and 
capital income will influence capital accumulation in the present setting.

B.2 Production

Production continues to have the same structure as in the baseline model. However, with 
no monopoly profits and no risk the accumulation of capital is simpler:

where we recall that the size of generations has been normalized to one. Substituting for 
optimal savings as well as (lagged) bequest leads to

The terms in the square bracket reflect that the income of the young is partly based on 
capital income, via bequests, and partly on labor income. The two motives for savings, 
life-cycle and bequest, both influence capital accumulation, and their relative importance is 
determined by � ; if � = 0 only wage income matters to the process of capital accumulation.

If we define k∗ in an analogous manner we get a steady-state relationship as:

where 1 + gT is the long-run growth rate of output and

and we can show the
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In the steady state a declining price of investment goods serves to increase the average 
productivity of capital due to accelerating economic depreciation, capturing physical decay 
as well as revaluation. This only happens when the bequest motive is operative, as can be 
seen. The underlying cause is that when economic depreciation increases it reduces the 
return to savings, thus bequests and therefore the income of the young consumers. Capital 
accumulation is thereby reduced and this increases long-run average capital productivity.

The reason why relative prices appear nowhere else in the formula except via deprecia-
tion is due to the Cobb–Douglas production technology which features an elasticity of sub-
stitution between capital and labor of one. The two “traditional effects”, discussed above, 
whereby a given amount of savings buys more capital—thus stimulating investments—and 
a declining marginal product of capital—thus discouraging investments—exactly cancel 
out.

We then recover the rate of return (risky or risk-free, equivalently):

In contrast to the baseline model, where the effect with logarithmic preferences is one for 
one, the effect is now smaller, depending on the bequest motive. When � = 0 we recover 
the original result.

C Quantitative estimate of the contribution from each parameter in FG

We first run the FG estimate with our two changes: estimating �∗ instead of � and with-
out the distinction between workforce and employment. The results are given in Table 2. 
Though the exact estimates vary, both estimates show that changes to � ( �∗) and � , the 
probability of disaster, are the major contributors to the decline in the risk free rate.

C.1 Overlapping generations in multiple periods

The utility function for an individual of age s at time t is defined as:

for s = t, ...T − 1 . In the last period of life the utility function is:

Financial wealth follows the process:

since a unit of the risky asset costs �∗ and therefore has return e�t+1∕�∗ (on the risky bal-
anced growth path).
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Step 1. Optimal savings
To find the solution we consider a risky balanced growth path and start at the second 

to last stage of life.
Since the individual does not work the last period of life, consumption must be (from 

the perspective of the second-to-last period):

which covers both the case where the individual works ( T − 1 ≤ G) and the one where the 
individual doesn’t. Ŵt,T−1 is consequently total wealth for the individual in the beginning of 
their T − 1 period of life.

The maximization problem is then

The first order conditions for this returns savings of

with consumption of (1 − ŝT−1)Wt,T−1 . This naturally replicates the savings expression 
of the two period model except savings is out of accumulated wealth and not first-period 
earnings.

This returns utility of:

Consequently, both savings and utility scale with total wealth.
The maximization problem in this period is:

where:

which gives a first order condition of:
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Continuing this progress allows us define 
{
ŝs, �̂�s

}T

s=1
 iteratively as:

with v̂T = (1 − 𝛽) , ŝT = 0 and:

where the second term is the future wage income discounted at the expected return on risky 
capital 1∕�∗ . We call Ŵt,s total wealth.

With this in hand we proceed to find the wealth for each generation.
Step 2: Financial wealth
With these functions in hand we can find the financial wealth (or debt) at each point in 

time for each generation.
Consider first a person aged 1 at time t who has no initial financial savings. Their finan-

cial savings at the end of their first period of life are st,s:

Now consider a person aged 2 at time t. By the logic above they saved st,1 the previous 
period with stochastic return of e�t∕�∗ . Consequently, their savings will be:

which consists of two parts: The financial savings from previous period (corrected for 
return and the lower wage in the previous period) + current income from which consump-
tion in period t is subtracted. The ratio of current financial savings to current wage income 
is independent of time. We can iteratively find all 

{
�k
}T

k=1
 in the same manner.

In particular for period 3 we have:
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T∑
k=1

1k≤G(𝛽∗(1 + g))
k−1

}
wt = 𝜆1wt

st,2 = wt12≤G +
e𝜒t

𝛽∗
𝜆1wt−1 − (1 − ŝ2)Ŵt,2
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Finally, to get total savings of the economy we need to correct for the growing population 
size. Consider a time period at which the size of the youngest population is Lt,1 and the 
corresponding size of older generations Lt,s = (1 + gL)

−s+1 . Consequently letting Λ be the 
share of wage income that is saved.

which is independent of t
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