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Abstract
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1 Introduction

During the past fifty years, the natural real rate of interest in Advanced Economies has declined by
about 300 bps (Rachel and Summers, 2019).1 Concurrently, there has been a consistent decrease in real
rates for secure assets. Fundamentally, this trend might be the result of increased aggregate savings,
reduced aggregate investments, or a mix of both. Our analysis introduces a previously overlooked but
potentially important element: an escalating rate of capital depreciation. We utilize an overlapping-
generation framework and demonstrate that the more typical representative-agent framework a priori
rules out a role of depreciation on the real rate of interest.

As documented in the following, the average rate of capital depreciation appears to have risen by
slightly more than 1 percentage point in the United States over the last half century. The best cross-
country data available indicates a similar trend in other Advanced Economies. Our analysis, utilizing
comprehensive data from the U.S. Bureau of Economic Analysis, reveals that this increase in depreci-
ation is widespread across various sectors. It remains unclear how much of the observed increase in
depreciation is due to physical depreciation and how much is due to revaluation, although intuition
may perhaps suggest the latter is more important when it comes to IT-related assets. We demonstrate
that an increase in depreciation rates will lower the steady-state risk-free rate, regardless of its cause.

To support this claim, we develop an overlapping-generations model of a closed economy. Our
model features risky investment, market power, and differential (exogenous) technological progress for
consumption and investment goods. The model is designed to capture three key mechanisms. Firstly,
it assumes a quicker pace of (exogenous) technological advancements in investment goods compared
to consumption goods, leading to a steady decline in the relative investment prices. Secondly, the user-
cost of capital depends on the cost of borrowing (i.e., the real rate of return), physical depreciation,
and the rate of change in the relative price of investment. When the relative price of investment goods
continuously declines (or the rate of physical decay goes up), the user-cost of capital increases. The
reason why prices matter is because the act of investment involves a capital loss: the price at which the
capital good is purchased is higher than the later resale value. Hence we capture faster depreciation
as either greater physical decay or a faster rate of investment good deflation. Third, with overlapping
generations, households have a life-cycle motive for savings. In our baseline model, we have a two-
period life, but in the quantitative setting we allow for arbitrary length of lifespan and work life. This
creates an upward-sloping supply curve of savings as a function of the risky return on assets.

These three elements interact in the following way. Assume a scenario where the rate of technolog-
ical advancement accelerates for investment goods relative to consumption goods, resulting in a faster
relative price deflation for investments. To fix ideas suppose that this experiment leaves the steady state
growth rate of the economy, which is a combination of technological change for the consumption and
investment goods, unaffected. In such a case, an increase in economic depreciation reduces the demand
for capital as the user cost of capital increases. With an upward-sloping supply of savings, this low-
ers the risky rate and increases the gap between the marginal product of labor and the risky rate. The
magnitude of the decline in the risky rate depends on the slope of the supply of savings, which we show
depends crucially on the elasticity of intertemporal substitution and the extent of monopoly power in the

1Rachel and Summers (2019) estimate the natural real rate of interest as the interest rate that is consistent with output at its
potential structural level and constant inflation.
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economy. We contrast this with a representative agent model where the supply of savings is horizontal
and changes to the rate of depreciation do not affect the risk-free rate.

The production side of our economy closely mirrors that of Farhi and Gourio (2019, henceforth FG).
Like them, we include risky returns, monopoly power, and different rates of technological growth in an
analogous manner. With risky returns, it is necessary to distinguish between the risky rate of return and
the risk-free rate, and the spread between the two is determined by a combination of risk-preferences
and riskiness of the asset. Since the production side of the models is identical, so is the demand for
physical capital as a function of the risky rate. With identical production structures, we can focus on
the crucial distinction between the two models, which is the supply of physical capital. In both models,
the demand comes from firms that rent physical capital. In FG, the supply curve comes from the Euler
equation of the representative agent, which creates a horizontal supply of capital, and does not permit
depreciation to affect the risky rate. In our model, in contrast, savings come from agents who wish to
save for future consumption. They can do so in two manners: By investing in physical capital, which is
then rented by the firms, or by buying equity in the same firms. With monopoly power, firms receive
monopoly rents, which they pay out as dividends. Equity is valued as the net present value of future
dividend payments. The supply curve of physical capital is thereby the combination of two things: the
savings of current workers and retirees and the fraction they choose to invest in physical capital. This
creates a supply curve of physical capital that is generally not horizontal but depends on two factors:
First, the elasticity of intertemporal substitution (EIS). If this elasticity is low, savings are only mildly
affected by the risky rate. This by itself creates a steep supply curve and thereby a large effect of higher
depreciation on the risky rate. However, with equity, there is an additional effect: A lower risky rate
increases the net present value of dividends, and thereby the value of equity. This directs more savings
towards equity and reduces the supply of capital. This flattens the supply curve of physical capital and
reduces the effect of depreciation on the risky return.2

The gap between risk-free and risk-free rates is shaped primarily by risk factors and individual risk
preferences. Thus, any changes that arise from other variables, including depreciation, simultaneously
affect both rates. Consequently, any alteration of the risky rate also impacts the risk-free rate, maintain-
ing their relationship.

We calibrate our model to the US data from 1984 − 2000, which is the time period where the rate of
depreciation grew the most. We use nine equations to match nine parameters exactly. Based on these
parameters, we find that the observed increase in deprecation of around 125 basis points translates into
a decline in the risk-free rate of around 30 basis points for an elasticity of intertemporal substitution of
0.25. 3. These are significant effects in light of the observed decline in the natural real rate of return of
about 300 bps (Rachel and Summers, 2019). There is considerably disagreement about the size of the EIS.
In the following, we discuss this literature and argue for a low EIS between 0 and 0.5. In a competitive
economy, the shift in savings towards equity would not have been present and the effect on return
consequently around 90 basis points, illustrating the importance of monopoly power. The increase in

2Moll, Restrepo and, Rachel (2022) develop a model with an upward-sloping supply curve of capital in the interest rate
arising from a specific dissipation shock to wealth accumulation and argue that a broad class of models would feature upward-
sloping supply curves. Though our focus here is on the savings motive, other models with an upward sloping supply curve
would also find that a higher depreciation rate lowers the real interest rate.

3The effect would be higher for a lower EIS, but less than 10 basis points for an EIS of 2
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the rate of depreciation was the highest in the period until the 2000s, and it has been relatively stable
since while the risk free rate has continued to decline. Consequently, we focus our analysis on the time
period leading up to 2000 and do not claim that the rate of depreciation has contributed to the decline in
the rate of interest over the past 20 years.

We employ a Cobb-Douglas production function. This ensures that a familiar mechanism, linking a
change in the relative price – as opposed to a change in the rate of decline of prices – of investment to the
real rate, is not present: Holding the marginal product constant, cheaper investment goods means that a
given amount of savings buys more investment, which increases the return to investment, but holding
savings constant, more investment lowers the marginal product of capital, which reduces the return on
investments. If the elasticity of substitution between capital and labor is smaller than one, the real rate
is reduced in equilibrium (e.g., Sajedi and Thwaites, 2016). With identical Cobb-Douglas technologies,
these effects cancel out. Canceling the familiar effects of a change in the relative price of investment
allows us to focus on the effects from changes to the rate of decline in the price of investment goods.4

The paper is related to the recent literature that discusses plausible explanations for the observed
decline in real rates of interest over the past half century. Several contributing forces have been put
forward. Useful overviews of the literature are found in Rachel and Smith (2017), Rachel and Summers
(2019), and Kiley (2020). The contribution of the present paper is to explore the relevance of capital
depreciation, a factor that has so far seemed neglected. Similarly related are contributions that aim to
explain the gap between the marginal product and the real rate, e.g. via rising market power or rising
risk premia; Eggertsson et al. (2021) contains an overview. Rising depreciation is a mechanism that has
also been left unexplored in this literature. One notable exception is FG who do explore the importance
of depreciation for gap between the marginal product and the risk-free rate, concluding it has been
unimportant. As we argue below, the reason for this is twofold: the representative agent framework
implies a horizontal savings schedule, which our OLG model does not. Second, they compare 1984-
2000 to 2001-2016 and infer relatively little increase in depreciation (physical + economic) between the
two periods. We directly calculate the average depreciation rate over a longer time period from 1970
onward, where the rate of depreciation has increased by more than 100 basis points.

The paper proceeds as follows. In the next section, we document that the average rate of depreci-
ation has increased. Section 3 demonstrates that for our purposes physical depreciation and economic
depreciation from price deflation are equivalent. Section 4 provides a two-sector OLG and derives our
analytical results. Section 5 extends the model to longer life expectancy and working life and performs
the quantitative assessment.

4While the mechanism discussed in Sajedi and Thwaites (2016) and the one in focus here are mutually reinforcing with
respect to the real rate of interest only the depreciation channel produces a gap between the real rate and the marginal product.
However, the mechanism explored by Sajedi and Thwaites links declining relative investment prices to the labor share. With
the Cobb-Douglas assumption, the aggregate labor share does not move.
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2 Aggregate Movements in the Rate of Depreciation

2.1 Measuring capital depreciation

From a national account perspective, “depreciation” is defined as the change in the value of a capital
good associated with the aging of the asset (Fraumeni, 1997). When a capital asset ages, its value may
change for several reasons. For one, physical wear and tear, which cause the productive capacity of a
capital good to decline, make it less valuable as it ages. In addition, the value of an asset can change due
to inflation, revaluation, or other factors that may be correlated with the age of the asset.

In practice, the rate of capital depreciation can be estimated for an individual type of capital good
using the regression-based approach pioneered by Hulten and Wykoff (1981). By employing data on the
resale price of assets, the effect of aging can be separated from pure time effects caused by inflation, and
if data are available, the “vintage” effect can also be controlled for.5

The Bureau of Economic Analysis (BEA), for example, distinguishes between more than 250 different
asset types. While the depreciation pattern for a particular vintage of a capital good is assumed to be
constant over time, the depreciation profile may differ across different vintages of capital goods (BEA,
2003, p. 29).

Ultimately, BEA and other statistical agencies use the estimates for depreciation to construct net
capital stocks and thus consumption of fixed capital in national accounts (Katz and Herman, 1997).
Combining depreciation rates with investment data, the perpetual inventory method is employed to
construct net capital stocks. The net stock of capital in a particular year is the difference between the
accumulated past gross investment and the value of the accumulated depreciation, and the calculation
is conducted at the type-of-asset level of detail.

Finally, to calibrate the average depreciation rate many macro applications have traditionally used
the weighted average of the underlying (estimated) depreciation rates where the individual weights are
the real shares of the individual capital stocks. This can be accomplished by “inverting” the aggregate
capital accumulation equation where investments and capital are at constant prices (see, e.g., Cooley and
Precott, 1995):

δt =
It − ∆Kt

Kt−1
.

However, the procedure has a couple of drawbacks. First, when using real shares as weights, the time
path of the average depreciation rate becomes sensitive to the choice of the base year, just as the average
growth of fixed-price GDP is sensitive to the choice of the base year. Specifically, if high depreciation as-
sets have exhibited declining prices over time (e.g., computers), and the final year is used as a base year,
the real share in the initial year is lowered, which mechanically tends to produce a positive trend (Oul-
ton and Srinivasan, 2003). Second, if investments are chain-weighted, it is no longer true that the above
approach produces a weighted average of the underlying depreciation rates (Whelan, 2002). Once again
the “traditional” approach might lead to an artificially upward trending average depreciation rate (Whe-
lan, 2002). To avoid these drawbacks Whelan (2002) and Oulton and Srinivasan (2003) recommend using

5The precise shape of the link between the age of an asset and its price can in addition be used to assess which type of
depreciation seems to be occurring. For example, if capital depreciation is geometric one would expect the resale value of the
asset to decline geometrically with the age of the asset; geometric depreciation is often difficult to reject (Hulten and Wykoff,
1980).
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Figure 1: The Depreciation Rate for Advanced Economics (Weighted by real capital. Source: PWT 9.1)

nominal shares as weights when one calculates the average depreciation rate. We follow this approach
when looking at the BEA data for the US below.

There is a varied literature on the measurement of the depreciation rate, in particular using US and
Canadian data (BEA, 2003; Patry, 2007, respectively). Tevlin and Whelan (2003) establish that the de-
preciation rate has increased substantially due to the increased reliance on computers, and more recent
work estimates the rate of depreciation of R&D (Rassenfosse and Jaffe, 2017).

2.2 The evolution of average depreciation: A cross-country perspective

We start by exploring the evolution of average depreciation for the bloc of Advanced Economies (AEs).
Data on average depreciation rates come from Penn World Tables (PWT, Feenstra et al., 2015).6 In the
cross-country context, we focus on the GDP-weighted average depreciation rate for the group of Ad-
vanced Economies (AE), as defined by the IMF, from 1970 until today. In addition to the weighted
average, we also calculate the simple average and the median.7 We focus on AEs because Rachel and
Summers (2019) recently estimated the natural rate of interest for this group, as noted in the Introduction,
documenting a decline since 1970.

The result is shown in Figure 1.a. While the average depreciation rate is relatively flat from 1970 to
1990, it has increased by around 100 basis points since 1990. As can be seen, the simple average and
the median move in a similar way, suggesting that this pattern is pervasive for the group of countries in
focus. With an eye to the analysis in the next section, where we focus on the US, panel b of the figure
depicts the evolution of average depreciation in the US according to PWT. The path is similar to that
detected for the AE group as a whole, albeit the recent increase is greater than that for the AE group.

6Ideally one would like to use detailed national accounts data for each country. But since the practices regarding depre-
ciation are not fully aligned across statistical agencies (some may use linear depreciation for parts of the period in focus, for
example), we resort to Penn World Tables (PWT, Feenstra et al., 2015) where the average depreciation rate is computed at a
consistent basis. The cost is a smaller selection of individual assets; PWT distinguishes between nine different asset types.
Depreciation is assumed to be geometric and constant across countries and time (cf Inklaar et al, 2019, Table 3).

7The PWT does not have information on GDP for all AEs throughout all years since 1970. Therefore, we exclude the
Czech Republic, Estonia, Latvia, Lithuania, San Marino, the Slovak Republic, and Slovenia from our sample. These countries
constitute less than 2 percent of GDP in 2017.
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Why has the depreciation rate increased? In the case of the PWT, where the capital stock comprises
nine types of capital with depreciation rates assumed constant and identical across countries, the reason
is a given: the composition of the capital stock has changed. Over time an increasing fraction of the
capital stock consists of short-lived assets, such as ICT and software. At the same time, it is important
to note that PWT calculates the average depreciation rate using real shares as weights (e.g. Inklaar et
al., 2019). As outlined above (and discussed in Oulton and Srinivasan, 2003), this tends to mechanically
produce upward trends in the deprecation rate. This is perhaps most easily illustrated by ICT capital in
the 1990s. Measured in today’s dollars the real stock of ICT capital in the 1990s was very small due to
the large subsequent declines in ICT prices. The average depreciation rate weighted by real capital will
therefore put almost no weight in the 1990s on the relatively high depreciation rate of ICT. However,
from the perspective of agents making investment decisions in the 1990s what mattered was prices at
the time, that is, nominal values. In Appendix A we elaborate on this: we consider a counter-factual
series where both the nominal capital shares and the depreciation rate for each asset type are constant.
From the perspective of agents in the economy the depreciation rate would be constant, but using the
real stock of assets as weights creates a growing depreciation rate. 89

To better understand the movements in average depreciation, we, therefore, turn to data for the US.
This change in perspective will allow us to explore the evolution of average depreciation using nominal
shares as weights (Whelan, 2002; Oulton and Srinivasan, 2003). It will also allow us to perform a detailed
decomposition analysis designed to shed light on the underlying drivers of the long-run evolution of
average depreciation.

2.3 The evolution of average depreciation: US data

Based on BEA data, Figure 2 shows the evolution of the average depreciation rate for the United States
from 1970-2020 (weighted by nominal capital). As is clear, the overall increase in average depreciation
weighted by nominal stocks is a bit more modest than suggested by PWT data weighted by real stocks.
The time path is also somewhat different. Using the BEA data, depreciation rises from the early 1970s
until the early 1990s and stays more or less flat until 2020, compared with a more gradual increase for
the PWT data. Quantitatively the average depreciation rate rises by about 125 basis points from 1970 to
2000 with a relatively flat path from 2000 to 2020.

Using the richer BEA dataset, it is possible to analyze the proximate sources of this increase at a
higher level of resolution. Specifically, to explore the source of rising depreciation we use the detailed
subdivision of 72 asset types. We next calculate the overall depreciation rate as δt = ∑i δi,tKi,t/Kt, where

8More formally: Consider an economy with two types of assets and a Cobb-Douglas aggregator of the two. The capital
types are ICT where prices decline with ∆ > 0 each period such that the price at time t is Pt = (1 + ∆)−t. Structures do not
see declining prices. Assets have the same physical rate of deprecation. Suppose a steady state exists where investment in
the two types grows in proportion to the economy. In such an economy, the ratio of each nominal stock of capital to output
will be constant. However, the ratio of the real stock of ICT capital to production will increase at a rate ∆. This implies that
when using the real stock of capital when weighing the aggregate depreciation rate (physical + economic), one puts increasing
weight on ICT and consequently measures an increase in the depreciation rate. Furthermore, the aggregate depreciation rate
for any given year will depend on the choice of base year for the price index. The nominal stock of capital does not suffer from
this built-in bias. Furthermore, for agents’ investment choices, it is the nominal stock of capital that matters.

9Though the PWT relies on 9 underlying asset categories, the publicly available data only has four: Structures, machinery,
transport equipment, and others. Since the detailed BEA data demonstrate that software and IT are particularly important, we
do not perform an exercise in which we weigh the PWT data by nominal assets.
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Figure 2: The Depreciation Rate for the United States (Weighted by nominal capital. Source: Bureau of
Economic Analysis)

Ki,t is the nominal (current-cost) stock of private fixed asset of type i (Kt is the total stock) and δi,t is the
depreciation rate (deprecation divided by stock of capital for each asset type). Finally, we perform a
decomposition of the change in the deprecation rate between period t − s and t as:10

δt − δt−s = ∑
i

δi,t−s

(
Ki,t

Kt
− Ki,t−s

Kt−s

)
︸ ︷︷ ︸

Reallocation

+∑
i

Ki,t

Kt
(δi,t − δi,t−s)︸ ︷︷ ︸

Change within asset type

,

where the first term gives changes in the aggregate depreciation rate from differential growth in asset
classes with different depreciation rates, and the second term considers changes in the depreciation rate
within asset types.

Figure 3.a performs this decomposition for each one of the decades from 1970 to 2020 as well as
the whole period. Though there has been substantial variation over the decades, the two terms are
of roughly equal importance.11 Since the 72 asset types used for the calculations here are themselves
aggregates of finer asset types, this estimate presents a lower bound on what the reallocation effect would
be from a finer disaggregation. ICT and software are important drivers of the increase in depreciation:
Whereas the increase in depreciation across all assets is 1 percentage point, it is 0.8 when excluding ICT
and 0.2 when excluding both ICT and software.

As can be seen from the figure, the analysis suggests a roughly 50/50 split between reallocation and
change within asset types. The two categories have seen the largest increase in the rate of depreciation
are computers and pre-prackaged software with, respectively, 23.7 and 21.2 point increase in the rate of
depreciation from 1970 to 2020. These calculations complement existing studies that have focused on

10Autor, Dorn, Katz, Patterson and Van Reenen (2020) use the same approach to decompose the change in the labor share
amongst firms.

11The negative reallocation effect from 2000-2009 is primarily due to a peak in ICT/software capital around the Dot-com
boom around the year 2000. There is some contribution from growing real estate capital until 2009 as well.
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Figure 3: Decomposition of Change in Depreciation Rate - by decades and whole period

the impact on aggregate depreciation from the rise of particular asset classes such as ICT (Tevlin and
Whelan, 2003) or R&D and intangibles (Corrado, Hulten and Sichel, 2005)

We perform an analogous analysis based on industry composition. Panel b of Figure 3 shows a
decomposition using the same method across 18 industries. The panel shows that the entire change in
depreciation comes from within-industry changes with a minor negative contribution from reallocation.
As a result, the underlying changes in the capital stock which account for the rise in depreciation is a
pervasive phenomenon across sectors. To the best of our knowledge, this is a novel finding. Though not
the main focus of the present paper, understanding this pattern deeper would be an interesting focus for
future work.

2.4 Discussion

The average rate of capital depreciation using the nominal stock of capital has risen since 1970 in the
US. The data from the PWT show a similar trend for the block of AEs. Though this data weighs the
depreciation rate by the real stock of capital and consequently, has a built-in bias towards an increase
in the rate of depreciation, the similar patterns in cross-country data suggest a pervasive phenomenon.
Baldwin, Liu and Tanguay (2015) also find an increase in the aggregate depreciation rate in Canada,
primarily due to compositional effects.

As discussed above, average depreciation rates are affected by both physical “wear and tear” and
revaluation; if the (relative) price of used capital declines, it shows up as faster capital depreciation.
When the resale value of capital falls it may, however, also reflect that investment goods are firm- or
sector-specific. Studying aerospace plant closings, Ramey and Shapiro (2001) find evidence that invest-
ment specificity appears to be important in practice. But since inter-sectoral reallocation seems to be of
minor importance to the rise in average depreciation this latter channel is probably not paramount to
the issue in hand. This leaves accelerated physical decay and revaluation.12

12The study by Ramey and Shapiro (2001) also contributes to the literature on capital depreciation in that they have access
to the actual purchase price of the equipment, which otherwise is assumed in the literature to be identical to the list price.
Moreover, by studying a natural experiment (plant closings) their sales data should be free of the “lemons problem” which
refers to the concern that part of the price reduction that the literature classifies as depreciation may be due to selection.
Reassuringly their estimates are fairly similar to the existing estimates in the literature.

9



There is no general way in which to fully separate “wear and tear” from revaluation (Hall, 1968), so
the data may be taken to imply that over time the capital stock increasingly consists of capital types fea-
turing faster physical depreciation, revaluation or both. In the context of IT equipment, the revaluation
channel is most likely relatively more important (Geske et al., 2007), although age-related effects also
seem to matter (Doms and Lewis, 2005).13

Before proceeding to the full model, we demonstrate the equivalence of physical and economic de-
preciation (through revaluations).

3 Physical Depreciation and Revaluation

Before we proceed with the theoretical model, we quickly discuss the distinction between physical de-
preciation and revaluation (Fraumeni, 1997). Though typically depreciation is modeled as physical, as
discussed above, the observed rise in depreciation is equally likely to be the result of revaluation consid-
ering the key role played by IT, software, etc. in the observed increase in average depreciation. Karabar-
bounis and Neiman (2014) show an accelerating decline in the global price of investment goods from
1980 since when real prices have declined by around 2 percent a year to 2010. This would depreciate the
value of existing capital goods.

To see the influence from revaluation in a simple way, suppose that we distinguish between invest-
ment and consumption goods with different price trajectories. We normalize the price of consumption
goods to 1, and, to simplify matters, consider a one-period problem facing a profit-maximizing repre-
sentative firm. The firm can rent capital in a competitive market at the rate Rt.

Profits are therefore given by:

Π = F(Kt, AtLt)− wtLt − RtKt,

with first order condition:
FK = RtKt.

Now, consider the a young person who wishes to save one unit of the final good for the future in
period t − 1. This person can do so by buying capital stock at the prevailing price pt−1 and renting it the
following period to the firm. One unit of the final good gives 1/pt−1 units of capital which gives a return
of:

1 + rt = Rt/pt−1 + (1 − δ)pt/pt−1.

This expression has two terms: First is the rental rate paid by the firm. Second it the value of the capital
in the following period. This consists of the remaining (1 − δ)/pt−1 physical units of capital now priced
at (the lower) pt.

Combining the two we find a relationship between marginal product of capital and the return on

13As pointed out by the authors, this channel undoubtedly captures more than physical decay. E.g., if new software becomes
progressively harder to run on existing IT equipment, this will show up as an “age effect”, which illustrates the point that
economic and physical depreciation is hard to disentangle in practice.
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savings as:

FK = pt−1

[
1 + rt −

(1 − δ)

pt−1/pt

]
,

where pt/pt−1 < 1 with declining prices. With constant capital prices at pt = 1, this condition reduces
to the familiar: FK = MPK = rt + δ. But in the two-sector setting, the (relative) price of capital reflects
buying and selling of capital may involve either capital gains or losses. In the case where the price of
capital is declining over time, relative to the price of consumption, the transaction involves a capital
loss which raises the user-cost of capital just like higher physical capital depreciation does. From a
partial perspective, therefore, there is no difference between an increase in δ or a fall in pt/pt−1; both
will serve to reduce the demand for capital for a given rt.14. As discussed in the last section, the rise in
NIPA average depreciation is most likely caused by either rising physical depreciation (δ), revaluation
(pt/pt−1 < 1), or both. Though the following model will have both monopoly power and risky returns,
this partial equivalence between physical deprecation and economic depreciation (revaluation) will still
be present.15

From a broader perspective, however, there is a difference in that the fall in the price of capital is
endogenous. It might, for instance, be caused by a faster rate of technological changes in the capital
goods-producing sector than what prevails in the consumption goods sector. A faster decline in the
(relative) price of capital, therefore, reflects a faster rate of technological change which will matter to
capital accumulation in its own right via the long-run growth rate of the economy. But a similar outcome
to the one described in the one sector setting can be obtained if total growth of the economy is held
constant by changing the sources of technological change.

Below we construct a two-sector model where both the consumption good and the investment good
are produced with the final good, and there is technological progress in both the production of the final
good and the investment good. 16 The steady-state growth rate of the economy combines these two.
An increase in the growth rate of technology for investment goods will increase the overall growth
rate of the economy, which has not generally been observed. However, a shift in technological growth
from consumption goods to investment goods leaves the growth rate of the overall economy constant
but drives the prices of investment goods down thus producing the effect on the user-cost of capital
discussed above.17 In this case, the remarks above will carry over: faster economic depreciation will
lower the real rate of return in the OLG setting, but not in the model with a representative agent.

14Note, what matters is here is the deflation in prices of capital, not the level per se. Sajedi, R., & Thwaites, G. (2016) use
a framework with a CES production function and demonstrate how the change in the level of the relative price of capital
influences the return to capital

15Fraumeni (1997) distinguishes between revaluation due to a obsolescence or changes or changes in asset prices. Our
framework does not distinguish between the two.

16Alternatively, we could have built a vintage capital model along the lines of Phelps (1962). This will give rise to the same
result.

17This is related, but distinct, from a recent literature arguing that technological change has shifted in favor of automation
without increasing the overall growth rate of the economy (Acemoglu and Restrepo, 2019, and Hémous and Olsen, 2022).
Automation, however, is the replacement of labor tasks with tasks performed by capital, whereas faster technological growth in
investment goods is the more rapid replacement of capital by new vintages of capital.
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4 The Model with Two Generations

We consider a closed overlapping-generations economy. Time is discrete t = 1, 2...∞. The economy
consists of two sectors that produce consumption goods and investment goods, respectively. The price
of the consumption good is normalized to one. Both sectors experience exogenous technological change,
but the growth rate is stochastic as specified below. The population grows at the rate gL. The production
side of the economy mirrors that of Farhi and Gourio (2019, FG), but whereas they use a representative
agent framework our model features overlapping generations.

4.1 Consumers

For simplicity we first consider a model where agents live for two periods. When we bring the model
to the data and relate it to the quantitative work of FG we allow for lifespans of arbitrary length. In
the first period of life, workers supply one unit of labor inelastically for which they receive a wage, wt.
During old-age, individuals consume the returns on their savings. To flexibly allow for the role of risk,
we follow FG and assume Epstein-Zin preferences such that the utility of a young person (in period 1 of
their life) is given by:

V1,t = maxc1,t

(
(1 − β)c1−σ

1,t + βEt(V1−θ
2,t+1)

1−σ
1−θ

) 1
1−σ

. (1)

Without uncertainty this reduces to the standard specification of discounted utility.
Here c1,t and c2,t are the consumption of, respectively a young and an old person in period t. σ is the

inverse of elasticity of intertemporal substitution (EIS), and θ is the coefficient of relative risk aversion.
When σ = θ the model features standard discounted expected utility expression.

The utility of an old person, where uncertainty has been resolved, is:

V2,t = (1 − β)
1

1−σ c2,t. (2)

In anticipation of the equilibrium structure of the mode, we solve the savings problem of a young
person who only has access to a savings technology with stochastic return of (1 + r∗t+1)e

χt+1 ,where χt+1

is a stochastic shock to returns and is i.i.d.. We let Eteχt+1 = 1 such that the expected gross return on this
asset is 1 + r∗t+1. Let st be the savings of a young person. The budget constraints are then:

c1,t + st = wt, (3)

c2,t+1 = eχt+1(1 + r∗t+1)st, (4)

such that a young worker chooses between savings and consumption and the old person only consumes
their savings.

Combining the budget constraints (3 and 4) with second period utility (2) and rewriting the the utility
function of the young person (1) we get the young person’s maximization problem:

V1,t = maxc1,t

(
(1 − β)c1−σ

1,t + β(1 − β)(wt − c1,t)
1−σ (1 + r∗t+1)

1−σ Et(e(1−θ)χt+1)
1−σ
1−θ

) 1
1−σ
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which has a solution of

st =
1

1 + β−1/σ(1 + r∗t+1)
σ−1

σ Et(e(1−θ)χt+1)
σ−1

σ
1

1−θ

wt = ŝ(r∗t+1)wt, (5)

where ŝ(r∗t+1) is the savings rate out of present income. With χt+1 i.i.d. the function ŝ is time-independent.
Further

c1,t = (1 − ŝ(r∗t+1))wt, (6)

and the (stochastic) consumption in next period:

c2,t+1 = eχt+1(1 + r∗t+1)ŝ(r
∗
t+1)wt (7)

With σ → 1, preferences are logarithmic and the savings rate out of income is ŝ = β/(1 + β) and
independent of expected return and the variance of χt+1. Consider an increase in the expected return,
r∗t+1, which lowers the relative price of future consumption. When the EIS is less than 1 (σ > 1), this
substitutes consumption towards the young age, and lowers savings: ŝ′ < 0. Further, a riskier χt+1 for
constant Eteχt+1 reduces Et(e(1−θ)χt+1)

1
1−θ , and for σ > 1 this increases savings. These effects are reversed

when σ < 1.
Given the uncertainty, assets with different risk profiles will have different expected returns. In

particular, the risk-free rate will be lower than r∗t+1. To price these assets we employ a convenient tool
from finance, the stochastic discount factor (Epstein and Zin, 2013). It is a generalization of the relative
marginal utility of consumption between periods:

Mt+1 = β

(
c2,t+1

c1,t

)−σ
 V2,t+1

Et(V1−θ
2,t+1)

1
1−θ

σ−θ

= β

(
c2,t+1

c1,t

)−σ
 c2,t

Et(c1−θ
2,t )

1
1−θ

σ−θ

= β

(
c2,t+1

c1,t

)−σ
(

eχt+1

Et(e(1−θ)χt+1)
1

1−θ

)σ−θ

.

(8)

The first equality is the general expression for the stochastic discount factor with Epstein-Zin prefer-
ences (see FG). The second equality utilizes the structure of the two period model: V2,t = (1 − β)

1
1−σ c2,t.

The third equality substitutes for c2,t+1 using equation (7).
Consider an asset with a stochastic outcome Υt+1. The stochastic discount factor can price any such

asset, traded or not, as follows:

PΥ
t = Et [Mt+1Υt+1] .

The intuition is that Mt+1 records the marginal discounted utility value of a payout in each state
and PΥ

t is the expected value of these payouts. If the economy had no uncertainty the stochastic dis-
count factor would be: Mt+1 = β (c2,t+1/c1,t)

−σ and the rate of return can be found from 1 = β(1 +

rt+1)(c2,t+1/c1,t)
−σ, the familiar Euler equation. The more general expression allows for the marginal

value of payouts to vary with the draw of χt+1. Naturally, the price of the asset that pays (1 + r∗t+1)e
χt+1

in period t + 1 is 1.
The risk free rate can be thought of as an asset that costs 1 in period t and pays out 1 + r f

t+1 in period
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t + 1. Consequently, we can find the value of 1 + r f
t+1 which has a price of 1:

1 = Et

[
Mt+1(1 + r f

t+1)
]
= Et

β

(
c2,t+1

c1,t

)−σ
(

eχt+1

Et(e(1−θ)χt+1)
1

1−θ

)σ−θ

(1 + r f
t+1)

 =
1 + r f

t+1

1 + r∗t+1

Ete−θχt+1

Et(e(1−θ)χt+1)
⇔

1 + r f
t+1 = (1 + r∗t+1)

Et(e(1−θ)χt+1)

Ete−θχt+1
, (9)

where we have used equations (6)-(8). Consequently, the spread between the expected return on the
risky asset (1 + r∗t+1) and the risk-free rate is captured by the properties of the shock χt+1 and the risk
preferences θ. Any parameter that changes 1 + r∗t+1 (other than changes to the distribution of χt+1 or θ)
will proportionally affect the risk-free rate. Consequently, when studying the equilibrium below, we can
focus on the return on the risky asset and find the risk-free rate as a consequence of equation (9)

The function ŝ(r∗t+1) captures the supply of capital in the economy. In the following, we specify the
production side which will capture demand for capital as a function of r∗t+1. For comparison with FG we
closely follow their specification of the production side of the economy.

4.2 Production

The final output is produced competitively with a unit measure of types, i ∈ [0, 1] of intermediate input.

Yt =

(∫ 1

0
y

ϵ−1
ϵ

i,t

) e
ϵ−1

,

where ϵ > 1 is the elasticity of substitution between intermediate inputs. The price of the final good is
normalized to 1 and is used for consumption or investment such that each point in time:

C1,t + C2,t + Xt = Yt,

where Ci,t is consumption in aggregate of generation i and Xt is total final good spent on investment.
Each intermediate input is produced by a unique monopolist with the production function:

yi,t = Ztkα
i,t(Stli,t)1−α,

where ki,t and li,t are capital and labor input of firm i at time t. Zt is an exogenous deterministic produc-
tivity trend that grows at gZ. St is a stochastic i.i.d. shock to productivity which follows:

St+1 = Steχt+1 .

Capital is accumulated using the final good and a stochastic production function. In particular, one
unit of the final good spend on investment in period t produces Qteχt+1 units of capital in period t + 1.
The technology parameter Qt grows exogenously at gQ. Investments goods are produced competitively
with the final good, and the price of an expected unit of capital is 1/Qt. Consequently, the accumulation
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function for the individual firm is:

ki,t+1 = [(1 − δ)ki,t + Qtxi,t] eχt+1 .

Due to uniform production technology, the economy easily aggregates to an aggregate production
function.

Yt = ZtKα
t (StLt)

1−α,

where Kt is aggregate capital and Lt is the size of the young generation that grows with gL.18 Given
demand from the final good producer, each intermediate input producer charges a markup of µ ≡
ϵ/(ϵ − 1) > 1. With zero profits in the final good sector, the total revenue for intermediate input produc-
ers is Yt. A fraction µ−1

µ Yt of this is the profit of the intermediate input producers. The remaining 1/µ

goes to labor and capital. Firms do not own the capital and hire workers at wages wt and rent capital
at the gross rental rate of Rt. All intermediate input producers have identical Cobb-Douglas production
functions such that:

(1 − α)
Yt

µ
= Ltwt,

α
Yt

µ
= RtKt.

Furthermore, the law of motion for aggregate capital is:

Kt+1 = [(1 − δ)Kt + QtXt] eχt+1 . (10)

Consider the return on investment in physical assets. If an investor spends one unit of the final good
on capital in period t, she will acquire Qteχt+1 units of capital in period t + 1. The capital will earn αYt+1

µKt+1

per unit of production and the physical depreciation will leave a fraction (1 − δ) of the capital left. The
price of capital will have decreased to 1/Qt+1 units of final good the following period. Consequently,
the gross return on investing in a unit of capital is given by:

RK
t+1 =

(
αYt+1

µKt+1
Qt +

1 − δ

Qt+1/Qt

)
eχt+1 , (11)

where the first term is the gross return to capital and the second term corrects for both physical and
economic depreciation as discussed in Section 3. This expression has the same risk profile, eχt+1 , as the
asset considered in section 4.1. The savings function ŝ(RK

t+1 − 1) can therefore be used to determine the
savings behavior of young people investing in physical capital.

The physical capital is not the only asset in this economy. The intermediate input producers com-
mand monopoly profits and consequently, equity in these firms has a value. Firms pay out dividends of
Dt = (µ − 1)/µYt each period. The price of this asset can also be priced using the stochastic discount

18FG allow for a labor force participation of less than 1 but find that this has no significant effect on the real interest rate. In
the present setting with overlapping generations, we could introduce a share of the young generation that does not work. This
would increase notational complexity with no additional insight and we do not pursue this.
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factor as:
Pt = Et [Mt+1(Pt+1 + Dt+1)] , (12)

which reflects that the price of equity in period t (after dividends have been paid) must equal discounted
value of next period’s dividends plus the price of equity next period, Pt+1. With a unit mass of firms Pt is
both the price of a single firm and total value of equity. That is, firms live forever, and each period they
are sold from the old to the young.

Without additional structure, it is difficult to price equity in general. In the next section, we follow
FG and specify a risky balanced growth path, which can be solved analytically.

4.3 The Risky Balanced Growth Path

To solve the model we conjecture that at each point in time the equilibrium of the model features:

Yt = TtSty∗, (13)

Kt = TtStQt−1k∗, (14)

C1,t = (TtStc∗1) , (15)

C2,t = (TtStc∗2) , (16)

with Xt = TtStx∗ and wt = L−1
t TtStw∗ and other aggregate variables analogously defined (the definition

of k∗ using Qt−1 is notationally convenient and is immaterial). The price of equity will likewise follow
Pt = TtSt p∗. This implies that output of the economy, Yt, will follow a deterministic path Tt and a
stochastic path governed by the realizations of χt and thereby St. The deterministic growth rate, T, is

given by Tt = NtZ
1

1−α
t Q

α
1−α
t and grows as:

1 + gT = (1 + gL)(1 + gZ)
1

1−α (1 + gQ)
α

1−α .

Using the structure of the risky balanced growth path along with the price of equity (equation 12) we
get:

Pt = Et [Mt+1(Pt+1 + Dt+1)] ⇔ 1 = Et

[
Mt

(
1 +

µ − 1
µ

y∗

p∗

)
(1 + gT)eχt+1

]
,

from which it follows that the riskiness of equity investments equal those of capital from equation (11)
(they are scaled by eχt+1). Consequently, the return must be the same. Using the expression for the
stochastic discount factor, Mt+1, from equation 8 we can further find:

p∗ =
(1 + gT)

r∗ − gT

µ − 1
µ

y∗, (17)

where r∗ is the expected return on both equity and physical capital. This is a Gordon formulae: The
value of equity equals the discounted value of future profits where the discount factor is the expected
return on the risky asset corrected for the growth of output. While the dividend share of output remains
constant at (µ − 1)/µ, the value of equity relative to the output is not fixed, but depends on the r∗. This
will be important in what follows.
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Finally, we use the structure of the risky balanced growth path along with (11) to find the value of
y∗/k∗:

1 + r∗ =
(

αy∗

µk∗
+

1 − δ

(1 + gQ)

)
⇔ r∗ =

(
αy∗

µk∗
− δ + gQ

1 + gQ

)
Section 4.1 solved for the savings of the young as a function of the return on the risky asset r∗. This

section derived expressions for the two possible assets to invest in, physical capital and equity. In the
following section we solve for the equilibrium and thereby determine the risky rate r∗. We derive the
derivative of r∗ as a function of (δ + gQ)/(1 + gQ) the total rate of depreciation.

4.3.1 Equilibrium in the savings market

Each period the young use their savings to purchase the two assets from the old. The remaining savings
are used for new investment. Consequently, the equilibrium must be:

ŝ(r∗)
1 − α

µ
Yt = Pt +

(1 − δ)Kt

Qt
+ Xt = Pt + Kt+1Q−1

t e−χt+1 , (18)

where the left hand side is total savings by the young measured in units of the final good. The right
hand side uses equation (10). The multiplication by e−χt+1 comes from the fact that the value of capital
the following period is stochastic and Q−1

t is the price of capital and investment in period t.
With this in hand we proceed with the following Proposition which establishes the equilibrium y∗/k∗

and the derivative wrt δTOT ≡ (δ + gQ)/(1 + gQ).

Proposition 1. The equilibrium level of output to capital y∗/k∗ and the expected return on capital r∗ are given as
the solution to:

y∗

k∗
=

(1 + gT){
ŝ(r∗) 1−α

µ − (1+gT)
r∗−gT

µ−1
µ

} (19)

1 + r∗ =
(

αy∗

µk∗
+

1 − δ

1 + gQ

)
, (20)

where the derivative of the expected return on capital with respect to total depreciation, δTOT, (holding total growth
of the economy, gT, constant), is given by:

dr∗

dδTOT = − 1{
1 + (α/µ)

1+gT
(y∗/k∗)2

(
ŝ′(r∗) 1−α

µ + (1+gT)
(r∗−gT)2

µ−1
µ

)} .

- a) if preferences are logarithmic, σ = 1, and market competitive, µ = 1, the expected return on capital
changes one-for-one with depreciation:

dr∗

dδTOT = −1,

- b) if µ = 1 and σ > 1, ŝ′(r∗) < 0 and a decrease in the expected return increases savings and leads to a
further decrease in expected returns:

dr∗

dδTOT < −1,

with 0 > dr∗
dδTOT > −1 if σ < 1
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- c) For µ > 1, a decline in the expected return on assets diverts savings towards equity, and reduces the capital
stock. In particular, for σ = 1 and µ > 1

dr∗

dδTOT > −1,

such that there is a lower than one-to-one effect on the risky rate of return.

Proof. Equation (19) follows from equation (18) where we impose the structure of the risky balanced
growth and use (17).

The proposition demonstrates that the effect of depreciation is equivalent, regardless of whether it
is physical depreciation, δ, or economic depreciation (1 + gQ) = Qt+1/Qt.19 Consider first the special
case of logarithmic preferences, σ, where markets are competitive, µ = 1, and there are no profits. In this
case, ŝ = β/(1 + β) and the return on capital is given by:

1 + r∗ =
(1 + gT)
β

1+β (1 − α)
+

1 − δ

1 + gQ
,

which shows that the expected return on capital changes one for one with depreciation since y∗/k∗ is
constant (equation 19 with µ = 1 and ŝ = β/(1 + β)). The risk free rate falls in proportion as given by
equation (9).

When σ > 1, the lower interest rate increases savings, ŝ′ < 0, which reduces y∗/k∗ and reduces
the marginal product of capital. This further decreases r∗, which reduces more than one-for-one with
depreciation. When σ < 1 this effect is reversed and the decline is less than one-for-one, though still
negative. This demonstrates the importance of the EIS for the effect of depreciation on the return on
assets. This effect will also be present in the more general version of the model with multiple periods
below.

When µ > 1 there is an additional effect from the reallocation of savings toward equity. Equation
(19) can be rewritten as

ŝ(r∗)
1 − α

µ
− (1 + gT)

r∗ − gT

µ − 1
µ

=
k∗

y∗
(1 + gT), (21)

which shows that physical capital equals savings of the young less the value of equity. Consider σ = 1,
such that savings of the young do not depend on r∗: An increase in depreciation lowers r∗, which in-
creases the value of equity from equation (17). Consequently, when the young use their savings to
purchase assets from the old, the higher price of equity leaves less for physical capital and therefore in-
vestments. Equilibrium y∗/k∗ rises and compensates for some of the decrease in r∗. This shifts of savings
between physical capital and equity is important for the quantitative assessment of rising depreciation
on r∗ below.

Before proceeding, we discuss the uniqueness of the steady state equilibrium (naturally, there is
always a steady state with y∗ = k∗ = 0). When the EIS is less than one – as in our preferred specification
– the possibility of multiple steady states potentially arises (Galor, 1992). We check in our quantitative
assessment below that the steady state is unique for our estimated set of parameters.20

19These comparative statics are done for given gT , and consequently an increase in gQ would have to be combined with a
decline in gZ.

20The issue of multiple steady states arises when the slope of the supply curve of capital is negative and therefore potentially
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However, with the existence of equity, even if the aggregate supply of savings depends negatively on
r∗, the redistribution of savings away from equity (when r∗ rises) could still leave savings for physical
capital higher. This condition is easily met in our quantitative application in the following.

In the following section we distinguish between these findings and those of a Ramsey model.

4.3.2 Ramsey vs. OLG

A central point of the present paper is the distinction between these results and those of a model with
a representative agent. Therefore, compare the results in Proposition 1 with those of a model with a
representative agent (as in FG). On the risky balanced growth path of a Ramsey model, the risky rate is
given by:

1 + r∗ = β−1
(

1 + gT

1 + gL

)σ [
Ee(1−θ)χt+1

] σ−1
1−θ

, (22)

which is the familiar Euler equation with growth in consumption of the representative agent of (1 +

gT)/(1 + gL) – the expected growth rate of the economy corrected for population growth – with an
additional term that captures uncertainty.21

Consequently, the model with the representative agent leaves no room for depreciation in the de-
termination of the return on capital, the supply curve of capital is entirely horizontal and the stock of
capital adjusts to ensure the same return net of depreciation. This is illustrates in Figure 4, which shows
the equilibrium market for physical capital. In Panel a, we plot the equilibrium from the Ramsey model.
The demand for capital (k∗/y∗) as a function of r∗ is given equation (20) and the supply of physical
capital comes from equation (22) which does not depend on k∗/y∗. The interest rate is given entirely by
the supply curve and does not depend on δ: An increase in δ shifts the demand curve, reduces k∗/y∗

and leaves r∗ remains constant. Panel b shows the corresponding equilibrium for the OLG model. The
demand for physical capital is the same, but the supply curve is given equation (19) which has a slope
of:

dr∗

d(k∗/y∗)
=

1 + gT

ŝ′(r∗) 1−α
µ + (1+gT)

(r∗−gT)
2

µ−1
µ

. (23)

The slope of this curve is generally ambiguous. With σ = 1 and µ = 1 it is a vertical line at a specific
k∗/y∗. For µ > 1 and ŝ′(r) not “too" negative it will be upward-sloping as shown in the figure. The
figure further shows the effect of an increase in δ which will now affect r∗. If the equity effect is large or
the response of savings to the interest rate, s′(r∗) are large the curve is flatter and a decline in r∗ lowers
k∗/y∗ which dampens the effect of a decline in δ on r∗.

The present paper makes a sharp distinction between savings for life-cycle motives and the represen-
tative agent framework. In practice, bequests between generations could to some extent bridge the gab

has multiple intersections with the demand curve for capital. The existence of markups generally increases the slope of the
supply curve and in our quantitative assessment the supply curve is always upward sloping. Therefore, no multiple steady
states arise.

21Equation (22) can also be derived from the stochastic discount factor. For the representative agent, the analogous calcula-
tions as for equation (8) can be used to find:

Mt+1 = β

(
1 + gT
1 + gL

)−σ

e−θχt+1
[

Ee(1−θ)χt+1
] θ−σ

1−θ .

Using this to price the asset with return (1 + r∗)eχt+1 as 1 = Et [Mt+1(1 + r∗)eχt+1 ] we recover equation (22).
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Demand for capital
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1
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1 + gQ )

(a) Ramsey Model

k*/y*

r*

OLG supply

Demand for capital

k*

y* =
s(r*)1 (1 + gT)

r* gT

1

1 + gT

1 + r* = ( (k*/y*) 1 + 1
1 + gQ )

(b) OLG Model

Figure 4: Equilibrium in the market for physical capital
Note: Figure shows the equilibrium in the market for physical capital. In both figures the demand for physical capital is given
by gross return on capital less economic and physical depreciation. In the Ramsey model, the supply of physical capital is
horizontal and given by the Euler equation of the representative agent. In the OLG model, the slope of the supply of physical
capital comes from the savings of the young less the value of equity. In general the slope is ambiguous and given by equation
(23).

between the two. In Appendix B we extend a simplified version of this model (with no risk or monopoly
power) to include a bequest motive. We show that in general a higher depreciation will continue to
reduce r∗, although to a less extent depending on the strength of the bequest motive.

Having established the qualitative implications of an OLG framework, we proceed to quantitatively
estimate our model. We will keep most of the structure but replace ŝ(r∗) with the general savings func-
tion of an OLG model with longer life spans.

5 A Multi-Period OLG Model and Quantitative Assessment

In the following, we quantitatively assess the importance of increased depreciation. To contrast the role
of the overlapping-generation framework with that of a representative agent, we keep our empirical
approach deliberately close to that of FG. They use the periods 1984 − 2000 and 2001 − 2016 and use 9
moments of data to estimate the model, separately for each time period, to exactly identify 9 parameters:
a) the risk price β∗ = 1

1+r∗ , b) risk modeled as a disaster γ22, c) the markup µ, d) the physical depreciation
of capital δ, e) the Cobb-Douglas parameter, α, f)-h) the growth rates of total factor productivity, gZ,
investment-specific progress, gQ, and population growth gL and i) the labor force participation rate.
The matched moments are moments: i) measured gross profitability (including return on capital)23,
ii) the measured gross profitability, iii) the investment-capital ratio, iv) The risk free rate, v) the price-
dividend ratio, vi)-viii) the growth rates of population, TFP and investment prices, and iix) the labor

22FG model risk as a three-point distribution of χt+1 with a) a disaster: χt+1 = 0 with probability (1 − 2γ), b) xt+1 =
log(1 − b) with probability γ and c) χt+1 = log(1 + bH) with probability γ. They set eb = 0.85 estimate γ in the model and set
bH such that Eeχt+1 = 1. We follow this approach, but the main conclusions of our analysis do not depend on this particular
choice of a risk profile. (p denote the probability in their paper, but we use γ to avoid confusion with the value of equity, p∗)

23FG build their model slightly differently, in that they let firms own the capital stock such that gross profitability includes
pure profits and return to capital. In such a model the only asset available for savings would be firm equity (which is then a
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force participation. They then discuss how variation in parameters drives the change in the rates of
return.

Our approach differs from FG in three ways: First, we exclude their ninth moment: employment/population
and, correspondingly, their parameter to capture this. Second, we focus on their first period 1984 − 2000
and perturb the rate of depreciation directly based on the change for US data from Section 2.2. Third,
we estimate β∗ = 1

1+r∗ instead of β.24 In the representative agent setting, neither of these changes signif-
icantly affect their conclusions (see appendix C). We will therefore also exactly identify our eight param-
eters. What is essential for our purposes is that the identification of these eight parameters is identical
in the two models. The only difference between the two is how the equilibrium return β∗ is tied to the
fundamental parameter β.

In a representative agent model the relation between β and β∗ comes from the stochastic discount
factor of the representative agent (equation 23):

β∗ =
1

1 + r∗
= β

(
1 + gT

1 + gL

)−σ [
Ee(1−θ)χt+1

] 1−σ
1−θ

, (24)

whereas in the overlapping-generation model the link is given from combining our equations (19) and
(20):

µ

α

(
1 + r∗ − 1 − δ

Qt+1/Qt

)
=

(1 + gT){
Λ(r∗, β) 1−α

µ − (1+gT)
(r∗−gT)

µ−1
µ

} , (25)

where Λ(r∗, β) is the generalization of ŝ(r∗, β) to more generations (derived below). We make explicit the
dependency on both r∗ and β (though naturally both ŝ and Λ depend on a broader set of parameters).
The left hand side is the required y∗/k∗ level consistent with an expected return of r∗ and the RHS is
y∗/k∗ level arising from the savings behavior.

Use equation (24) to define the function f RA(β, r∗) ≡ β
(

1+gT
1+gL

)−σ [
Ee(1−θ)χt+1

] 1−σ
1−θ − 1

1+r∗ and note

that f RA(β, r∗) = 0 defines β for any given set of parameters and r∗. Similarly, use equation (25) to
define f OLG(β, r∗, δTOT) = 0, which defines β for the model with overlapping generations. Importantly,
f OLG is a function of δTOT, whereas f RA is not (again, holding the growth rate of the economy constant).

In the OLG model, the effect of δTOT on the the real interest rate (holding the fundamental parameter
β constant), is given by:

∂r∗

∂δTOT =
f OLG
δTOT

f OLG
r∗

,

where f OLG
δTOT denotes the derivative of f OLG wrt δTOT and analogously for r∗.

In order to take this expression to the data, we note a practical problem: whereas the representative
agent model of FG is estimated on yearly data, our specification of the OLG model features a lifespan of

claim on both monopoly rents and physical capital). Tobin’s Q would give

p∗/k∗ = (1 + gT)

(
1 +

µ − 1
α

r∗ + δ + gQ

r∗ − gT

)
,

which is equation (24) in their paper. This would be the only asset to invest in such that in equilibrium ŝ(r∗) 1−α
µ y∗ = p∗ which

gives the same equilibrium as in Proposition 1.
24The code from FG available on their website conveniently allows for the estimation of β∗ instead of β.
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two periods, and consequently substantially longer periods. We therefore extend our model to multiple
periods.

5.1 Extending the model to multiple periods

In the following, we allow our overlapping generations model to include multiple periods. In particular,
we let an individual lifespan be T periods (years) out of which an individual works for the first G periods.
We abstract from individual wage profiles and assume that any individual who works at time t earns
the wage wt. The work force is Lt and continues to grow at gL. Lt,k is the size of the workforce aged k
at time t, such that Lt = ∑G

k=1 Lk,t.We leave the retirement age of an individual, G, exogenous, though
endogenizing this would be an interesting extension.25

The solution to this model inherits the stable properties of the risky balanced growth path. In partic-
ular, in the appendix we show that:

Proposition 2. Extend the overlapping generation model such that individuals live for T periods and earn income
for the first G periods. All working individuals earn wt . Then

a) There exists an equilibrium with a risky balanced growth path where total wages, savings and output are
proportional to TtSt Individual wages grow at (1 + g) = (1 + gT)/(1 + gL).

b) Let Wt,k be the financial wealth of an individual born at time t of age k (such that Wt,1 = 0 for a “new"
individual with k = 1). Let Ŵt,k be total wealth, including future discounted wage income (including the current
period t):

Ŵt,k = Wt,k +
G−k+1

∑
m=1

wt

[
(1 + g)
1 + r∗

]m−1

,

where r∗ is the discount factor using the return on the risky asset and the individual only earns income if they are
still working, k ≤ G.

c) On a risky balanced growth path total wealth of an individual of age k is given by

Ŵt,k = TtStL−1
t ŵ∗

s ,

and individuals consume a time-independent, but age-dependent share of remaining total wealth: (1 − ŝk)Ŵs,k,
where ŝk is function of the return on assets β∗ and is given iteratively as:

ŝk(r∗) =
1

1 + (1 − β)1/σ (ν̃k+1)
−1/σ (r∗)

σ−1
σ β−1/σE

(
e(1−θ)χt+1

) σ−1
σ

,

ν̃k(r∗) =
(
(1 − β) (1 − ŝk)

1−σ + ν̃k+1 (r∗)
1−σ (ŝk)

1−σ βE
(

e(1−θ)χt+1
) 1−σ

1−θ

)
,

with ν̃T = (1 − β) and ŝT = 0. For σ = 1, ŝk is independent of r∗.

25Carvalho Ferrero and Nechio (2016) analyze the effect of the changing demographics, in particular longer lifespan, on the
rate of return. They do so in an OLG model with young and old, but a stochastic transition from young to old and from old
to dead for individuals. Longevity is modeled as a lower probability of dying. They find that increased savings from longer
lifespans significantly affected the rate of return. We view the two OLG modeling approaches as complementary.
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Figure 5: Accumulated financial savings
Note: Figure shows a cross-section of financial savings for each generation relative to yearly earnings of currently working
person. Each panel presents a different elasticity of intertemporal elasticity and the effect on savings from an increase in the
return on the risky asset, r∗.

d) The current wealth of an individual aged k at time t is given by:

Wt,k = λk(r∗)wt,

where λk(r∗), the ratio of financial wealth of an individual aged k to current wages is independent of time.
e) Total savings in the economy at time t are proportional to total wages and are given by:

T

∑
k=1

λk(r∗)Lt,kwt =
∑T

k=1 λk(r∗)Lt,k

∑G
k=1 Lt,k

G

∑
k=1

Lt,kwt ≡ Λ(r∗)
(1 − α)

µ
Yt,

where Lt,k is the size of the population aged k at time t and Λ is not a function of t.

Proof. See Appendix C.1

The proposition extends the savings function of equation (5) and replicates the result from Section 4
when T = 2 and G = 1. Though the expression is explicit (see the appendix), evaluating it algebraically
is complicated, and we solve for it numerically using the calibrated parameters below. In particular,
based on a start of work life at age 20 we set T = 65 and working life G = 4026

In Figure 5 we plot the savings – that is without net present value of future wages – of a cross section
of individuals and the increase in the expected return on assets from 6.6% to 7.6%.27 Λ is the sum
of generational savings where the weight is the average size of each generation. With no population
growth, Λ is the integral under the plot. We show this figure for a range of values for the EIS (1/σ).

26Given a starting life of 20, the value of T at 65 might seem high. Although the quantitative results of the effect of deprecia-
tion on the risk-free rate below depend only little on this assumption, a lower T gives too little aggregate wealth in the economy
to match the data without a very high β (above 1). Any extension with bequests, uncertainty about time of death, housing, or
direct utility of wealth would also increase savings.

27Note, this does not equal the savings profile of a given individual throughout her lifetime. This is so for two reasons: i)
People of older generations will have accumulated financial savings out of past (lower) wages, and ii) This figure shows total
savings for each generation, and correspondingly younger generations are bigger.
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Table 1: Estimated parameters for 1984-2000

β(σ = 1/2) β(σ = 3) β(σ = 4) β∗ µ γ δ α gL gZ gQ
0.95 .98 0.99 0.94 1.08 0.04 2.1 0.24 0.6 1.30 1.77

Note: The parameters δ, gL, gZ, and gQ have been scaled by 100.

Panel a shows a high value of the EIS (σ = 1/2). The panel shows initial financial wealth of 0 with the
generations at age 40 holding the highest stock of wealth. After retirement, savings decline and reach
0 at age 65. The figure is scaled by wage earnings (it shows λk) of a working individual such that an
individual at age 40 has savings of around 8 times annual earnings for r∗ = 6.6% (the estimated value
below). We consider a 1 percentage point increase in the expected return. The decrease in the relative
price of future consumption, pushes consumption towards the future and increases savings. With a high
value of EIS this effect is large and the savings profile across generations increases substantially. Panel b
plots the same figure, but for an EIS considerably lower than 1 (σ = 3). The substitution is now towards
current consumption, but there is a contrary effect: the future discounted value of future labor income
declines with a higher return which lowers current consumption. For these two panels these effects
almost balance, and aggregate savings only increase a small amount. In panel c with σ = 4 there is a
small decline in aggregate savings.

With aggregate savings Λ in hand we proceed to find the effect of an increase in depreciation on the
risk-free rate.

5.2 The effect of depreciation on the risk free rate

We proceed to run the estimation procedure of FG. They consider two time periods 1984 − 2000 and
2001 − 2016. The procedure considers the economy to be in steady state in each of these periods and
compares the change in parameters between the two periods. We base our parameter estimates on the
period 1984 − 2000 (the first period of FG) since most of the increase in the depreciation rate happened
in this period.28 Since we do not calibrate a labor force participation rate, we have 8 parameters to which
we add an equation to determine β. This is an updated version of equation (25), with Λ replacing ŝ to
allow for multiple generations:(

1 + r∗ − 1 − δ

1 + gQ

)
µ

α
=

1 + gT{
Λ(r∗, β) (1−α)

µ − (1+gT)
(r∗−gT)

µ−1
µ

} . (26)

Table 1 shows the values of the corresponding parameters, including the estimate of β. β∗ is estimated
indepedently of σ, and we show three values of β for different values of σ. (note that δ, gL, gZ and gQ

have all been scaled by 100).
We use equation (26) to estimate the effect of a change in δTOT on r∗. We do so for a range of σ values.

That is, for each value of σ we calculate the implied β and differentiate equation (26) with respect to δTOT

28Admittedly, there is an uncomfortable tension between Figure 2 which shows a sizable increase in the rate of deprecation
over the time period 1984 − 2000 and the estimation procedure which considers these parameters to be constant. Solving the
model out of the steady state would be considerably more complicated. We believe that quantitatively similar effects would
still be in play.
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Figure 6: Derivative of risky return, r∗, wrt total depreciation δTOT

holding β constant. The results are shown in Figure 6. The intuition for the effect remains the same as in
Proposition 1.

To illustrate this we consider both the case of a markup as estimated from the data, µ = 1.08 and the
corresponding model without markups (µ = 1)29. For each case we consider a range of σ. Panel a shows
the results for µ = 1.08 with all other parameters as in Table 1. We see that the extended OLG model
replicates the qualitative effects of an increase in depreciation and continues to show substantial effects
from increased depreciation on the return on capital. However, this effect strongly depends on σ for
the same reason as illustrated in Figure 4: A high EIS makes savings more sensitive to changes in r∗ and
creates a flatter supply curve of physical capital. For the estimated value of µ = 1.08 and a value of σ = 4
the decline in deprecation of around 5/4 from 1970 to the early 2000s can explain around 5

4 × 1
4 = 5

16 ,
around 30 points the decline in the real return on capital rate. If σ = 1/2 savings of young people are
considerably more sensitive to r∗ – the supply curve analogous to Figure 4.b for multiple generations is
much flatter— and the effect of δ on r∗is negligible, around 7 points.

Panel b demonstrates the quantitative dependence on µ, the markup that allows for equity. When
µ = 1, savings are only invested in physical capital and the implied effect on the return to capital is
around 90 points for σ = 4.

Finally, we use equation (9) and take logs with the approximation that log(1 + r f ) ≈ r f to find an
expression for the risk-free rate to get:

r f ≈ r∗ − log
[

Ete−θχt+1

Et(e(1−θ)χt+1)

]
, (27)

where log
[

Ete−θχt+1

Et(e(1−θ)χt+1 )

]
= 0.03. Consequently, for given risk characteristics and preferences, the risk-free

rate follows the return on equity, and Figure 6 applies equally to the risk-free rate.

29We keep all other parameters constant when we set µ = 1. Consequently, this set of parameters does not match the
empirical moments, in particular the profit share.

25



Of course, r∗ is the marginal product of physical capital, which is not easily measured in the data.
An easier object to measure is the average product of capital. Caballero, Farhi and Gourinchas (2017)
discuss trends in the risk free rate and the average return to capital. To relate to this literature, in the
following we calculate the average return on capital in our model. We change our model and let firms
own the stock of capital. As stated in footnote 23 this alternative model is isomorphic to our preferred
specification. The sum of the average gross (including depreciation) product of capital + profits is given
by:

αy∗

µk∗
+

1 − µ

µ

y∗

k∗
=

(
α + 1 − µ

µ

)
y∗

k∗
,

but in the literature (i.e. Eggertsson et. al., 2021) the average product of capital is measured net of
depreciation (ideally both physical and economic) as:

APK =

(
α + 1 − µ

µ

)
y∗

k∗
− gQ + δ

1 + gQ
.

In the steady state the ratio of y∗/k∗ is given by equation (20) which we use to write an expression for
the APK over the risk free rate as:

APK − r f =
1 − µ

α

(
r∗ +

gQ + δ

1 + gQ

)
+ r∗ − r f .

Empirically, APK has remained relatively constant while r f has declined. This framework allows the
spread between the two to arise from either monopoly rents or the risk premium.30 depreciation (qQ +

δ)/(1+ gQ) only affects the spread in that it increases y∗/k∗. Both Eggertsson et. al. (2021) and Caballero
et. al. (2017) as well as a host of other papers find that increasing profits have played an important role
in keeping APK constant despite the decline in risk free rate.

We have shown that the deviations of the Ramsey model from the OLG model depend strongly
on the EIS: with a high value, savings are very sensitive to changes in the interest rate, and the OLG
quantitatively mirrors the Ramsey model. With a low EIS, the supply curve is steeper, and changes in
the demand for physical capital can have substantial effects on the return on capital and with it the risk
free rate.

5.2.1 Empirical estimates of the Elasticity of Intertemporal Substitution

There is a vast literature on EIS estimates. Havránek (2015) surveys 169 published studies and finds a
mean estimate of around 0.5 (σ = 2). He argues that there is substantial selective reporting as scholars
discard negative or insignificant results. When he corrects for this, he finds a mean estimate of micro
studies of 0.3 − 0.4 with essentially zero from macro studies. Yogo (2004) argues that studies of the EIS
based on the Euler equation suffer from weak instruments. In a macro study of 11 countries, he finds
an EIS less than 1 and usually not different from zero. Best, Cloyne, Ilzetzki and Kleven (2020) use
the particular structure of the UK mortgage market which features discrete jumps and employ methods

30Caballero et al. (2017) have a similar expression but consider a case where measured APK is only net of physical deprecia-
tion. In this case a higher rate of economic depreciation can also increase the spread between the two. Naturally, if APK does
not adequately account for depreciation, a rising depreciation can also increase the spread.
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from public finance on “bunching". They find an EIS of around 0.1.
Taken together, these studies suggest that aggregate savings behavior and consumption are not

highly sensitive to the interest rate, consistent with an upward-sloping supply curve in the OLG model.
The literature suggests an EIS less than 0.5 and, correspondingly, an σ > 2.

6 Conclusion

Judged from the best available evidence, the average rate of capital depreciation has increased over the
last half-century in the US and it seems likely that this trend is pervasive across advanced economies. A
decomposition analysis finds that a rising share of capital assets featuring relatively high depreciation,
such as IT, is chiefly responsible. This development is pervasive across sectors.

From a theoretical perspective a rising depreciation rate, whether driven by rising physical decay or
revaluation, will work to lower the real rate of return in the steady state if aggregate savings are only
modestly affected by changes in capital income. This amounts to saying that if the life-cycle motive is
sufficiently important in explaining aggregate savings a rising depreciation rate should work to lower
the real rate in the long run. This is in contrast to a model with a representative agent, where the Euler
equation pins down the return. Our introduction of an overlapping-generation framework is relatively
malleable. In this paper we focus on the real interest rate and rates of depreciation, but our framework
could be used to address other research questions where the use of a representative agent might be too
restrictive.

Although the relative importance of the life cycle for savings remains an active area of research, our
calibration suggests that the highlighted mechanism may have contributed significantly to the reduction
in the risk-free rate since 1970, of around 30 basis points. In addition to contributing to the secular decline
in the real rate, a rising depreciation rate could also contribute to a greater spread between the calibrated
marginal (or average) product of capital and the risk-free real rate of interest.

Capital depreciation reflects both physical decay and revaluation. The revaluation element, in turn,
reflects that declining investment prices represent a capital loss for capital owners, which serves to lower
the return ceteris paribus. The present study can thus be seen as adding a complementary reason why
declining investment prices may lower the real rate of return beyond that which has been explored
in the literature. Declining investment prices may thus be considerable more important in explaining
developments with respect to the real rate, in totality, than hitherto recognized. If productivity growth
in the production of investment goods is expected to be above that in the production of consumption
goods in the future, a declining investment price may serve to keep the real rate of return low in the
future. Conversely, if the relative price of investment goods stabilizes, such that the rate of relative price
decline is smaller, our model would predict a future increase in the rate of return.
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Appendix

A Data Appendix

The following describes in further details the data behind the average depreciation rates. It is based on
the current-cost net stock of assets and the real-cost net stock of assets (see page M-7 in U.S. Department
of Commerce. Bureau of Economic Anayasis, 2003). The real stock of assets of type i in year t is given
by KR

i,t. This is measured in prices of a reference year, in this case 2017. The BEA then calculates the
current cost value of the assets by KN

i,t = Pi,t × KR
i,t, where Pi,t is the corresponding price index. KN

i,t then
measures the price of the stock at time t and not in 2017. The depreciation rate for each capital type, δi,t,
can be found by taking total depreciation and dividing by the stock of assets. One can then calculate the
average depreciation rate – by nominal and real weights, respectively – as:

δN
t =

∑i KN
i,tδi,t

∑i KN
i,t

,

δR
t =

∑i KR
i,tδi,t

∑i KR
i,t

=
∑i

(
KN

i,t/Pi,t

)
δi,t

∑i

(
KR

i,t/Pi,t

) ,

such that δN
t can change due to reallocation of KN

i,t across asset types or δi,t (as shown in Panel b of
Figure 3). δR

t can also change due to different paths in Pi,t. As argued in the main body of the paper,
δN

t is preferable. To illustrate this, consider panel A1.a. This shows three series, all of which intersect in
2017, the baseline year for real stock calculations. First, it shows the depreciation rate weighted by the
real stock of value (Actual series). This corresponds to Panel b of Figure 1, though using more detailed
BEA data instead of the PWT. To illustrate the problem with using real values, consider a hypothetical
economy in steady state: There is no change in the nominal share of different equipment types and the
depreciation rate for each equipment type is held constant. There is, however, different growth rates for
the price index of different capital types. The depreciation rate from the perspective of agents is constant,
but using real capital to measure the depreciation rate will enduce a bias in the measure.

We create two counterfactual data series. First, we consider a hypothetical series in which the weights
of nominal capital KN

i,t/ ∑i KN
i,t is constant at its 2017 level throughout the period; changes in δR can come

only from changes in asset-specific depreciation or different growth rates in price indices. The figure
shows this alternative series as “Holding nominal capital shares constant”. Since nominal asset growth
has been the highest for assets with a high depreciation rate, this implies a higher depreciation rate in
1970; an increase from the actual series of about .5 points. Second, we consider a counterfactual world
where both the relative weight of nominal capital and the depreciation rate are held constant at 2017
values, such that only the effect of Pi,t is present. For this series, the depreciation rate weighted by real
capital grows by around 1.5 points from 1970 to 2017. This illustrates that in a counterfactual world with
no change in relative nominal assets values or asset-specific depreciation rates, the average depreciation
rate would still show growth. Due to the approximate exponential feature of price indices, this series
will also appear exponential.
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Figure A1: The rate of depreciation and the real stock of assets (1970-2020)
Note: Panel a shows the average depreciation rate weighted by the real stock of assets. It performs two counter-factuals:
Holding the nominal share of assets constant at 2017 values. Holding both nom. shares constant and depreciation rates for
each asset type. Panel B shows the average depreciation rate against the average price decline (23).

Panel b shows a scatter plot across the different asset types. It shows the average yearly price change
for each asset plotted against the (arithmetic) average of depreciation across the time period (the very
high depreciation rates are found within software). There is a clear negative relationship between the
two: assets with the highest depreciation rates have seen the highest declines in prices and consequently
have artificially little weight early in the time period when using the real stock of assets.

B A model with a bequest motive

We present a simple version of our 2-generation model, where we allow for bequests. We abstract from
monopoly rents and uncertainty and focus on logarithmic preferences. We also let all generations have
the same size, Lt = 1

B.1 Consumers

Individuals live for two periods. In the first period of life, they supply a unit of labor inelastically for
which they receive a wage. They receive bequests and save. During old-age individuals consume and
pass on bequests to their heir from their savings during youth. Lifetime utility for a generation born at
time t is

ut = ln c1,t +
1

1 + ρ
(ln c2t+1 + η ln bt+1).

where c1,t is consumption during youth and c2,t is consumption during retirement, bt+1 is bequests while
ρ represents time preferences. Per period utility is logarithmic, which implies that the savings rate will
be independent of the real rate; we discuss below how our results are likely affected if this assumption
is relaxed.

The bequest motive is captured by joy-of-giving preferences, and η parameterizes the strength of the
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bequest motive. An alternative modeling approach is to assume that households behave dynastically,
deriving utility from the utility of the descendants and so on. But this will produce a model where
the aggregate savings behavior is isomorphic to an infinitely lived consumer if bequests are passed on,
which implies that steady-state savings solely depend on capital income (Barro, 1974; Bertola, 1994).
In order to produce behavior where both wages and capital income matter, we, therefore, resort to the
joy-of-giving specification.31

The budget constraints are
c1t + st = wt + bt ≡ It,

(1 + rt+1) st = c2t+1 + bt+1,

where the assumption that each generation is of equal size eliminates any need to normalize first period
bequest. Accordingly, the first period income comprises wage income, wt, and bequest, bt. Second period
income consists of savings during youth with interest, where rt+1 is the real rate of interest.

Maximizing life-time utility subject to these constraints leads to the following solutions for first pe-
riod savings and late-in-life bequest

st =
1 + η

2 + ρ + η
It,

bt+1 =
η

1 + η
(1 + rt+1) st.

Log preferences imply that the savings rate is independent of the real rate of return. The presence
of a bequest motive (η > 0) increases the savings rate compared to a standard two-sector OLG model.
In addition, consumers divide their accumulated lifetime wealth between their own consumption in
old age and the bequest of their offspring; the split becomes more favorable to the next generation if η

increases in size.
Taken together, this behavior implies, in contrast to a our baseline model with logarithmic prefer-

ences, that the real rate of return will influence the process of capital accumulation. A higher real rate
increases accumulated savings, which translates into greater bequests and thus the income of the next
generation, which then fuels more savings. The strength of this channel depends on the size of η . As a
result, both wage income and capital income will influence capital accumulation in the present setting.

B.2 Production

Production continues to have the same structure as in the baseline model. However, with no monopoly
profits and no risk the accumulation of capital is simpler:

Q−1
t Kt+1 = st,

31The assumption that consumer welfare depends on terminal wealth, or bequest, goes back to Yaari (1964). The empirical
relevance of a bequest motive is well established, albeit the strength of the motive, relative to the life-cycle motive, is an active
area of research. See De Nardi, French and Jones (2016).
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where we recall that the size of generations has been normalized to one. Substituting for optimal savings
as well as (lagged) bequest leads to

Q−1
t Kt+1 =

1 + η

2 + ρ + η

[
η

1 + η
(1 + rt) Q−1

t Kt + (1 − α)Yt

]
.

The terms in the square bracket reflect that the income of the young is partly based on capital income,
via bequests, and partly on labor income. The two motives for savings, life-cycle and bequest, both
influence capital accumulation, and their relative importance is determined by η; if η = 0 only wage
income matters to the process of capital accumulation.

If we define k∗ in an analogous manner we get a steady-state relationship as:

k∗ =
1

1 + gT

1 + η

2 + ρ + η

{[
η

1 + η
α + (1 − α)

]
y∗ +

η

1 + η

(1 − δ)

1 + gQ

}
,

where 1 + gT is the long-run growth rate of output and

y∗ = (k∗)α
(

1
1 + gQ

)α

,

and we can show the
y∗

k∗
=

(1 + g) (2 + ρ + η)

ηα + (1 + η) (1 − α)
−

η (1−δ)
1+gQ

ηα + (1 + η) (1 − α)
, (28)

In the steady state a declining price of investment goods serves to increase the average productivity
of capital due to accelerating economic depreciation, capturing physical decay as well as revaluation.
This only happens when the bequest motive is operative, as can be seen. The underlying cause is that
when economic depreciation increases it reduces the return to savings, thus bequests and therefore the
income of the young consumers. Capital accumulation is thereby reduced and this increases long-run
average capital productivity.

The reason why relative prices appear nowhere else in the formula except via depreciation is due
to the Cobb-Douglas production technology which features an elasticity of substitution between capital
and labor of one. The two “traditional effects”, discussed above, whereby a given amount of savings
buys more capital – thus stimulating investments - and a declining marginal product of capital - thus
discouraging investments - exactly cancel out.

We then recover the rate of return (risky or risk-free, equivalently):

1 + r∗ = α
y∗

q∗
+

(1 − δ)

1 + gQ
=

α (1 + g) (2 + ρ + η)

ηα + (1 + η) (1 − α)
+

(1 + η) (1 − α)

ηα + (1 + η) (1 − α)

(1 − δ)

1 + gQ
, (29)

In contrast to the baseline model, where the effect with logarithmic preferences is one for one, the effect
is now smaller, depending on the bequest motive. When η = 0 we recover the original result.
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C Quantitative estimate of the contribution from each parameter in FG

We first run the FG estimate with our two changes: estimating β∗ instead of β and without the distinction
between workforce and employment. The results are given in Table 2. Though the exact estimates vary,
both estimates show that changes to β (β∗) and γ, the probability of disaster, are the major contributors
to the decline in the risk free rate.

Estimation 1984-00 2001-16 Difference β β∗ µ γ δ α gN gZ gQ

FG 2.79 -0.35 -3.14 -1.22 n/a 0 -1.62 0 0 0 -0.19 -0.10

FG with our changes 2.79 -0.35 -3.14 n/a -2.10 0 -1.04 0 0 0 0 0

Table 2: Contribution of different parameters to the decline in the risk-free rate: FG original and FG with
our changes

C.1 Overlapping generations in multiple periods

The utility function for an individual of age s at time t is defined as:

Vt,s =

(
(1 − β)c1−σ

t,s + βE
(

V1−θ
t+1,s+1

) 1−σ
1−θ

) 1
1−σ

for s = t, ...T − 1. In the last period of life the utility function is:

Vt,T = (1 − β)
1

1−σ ct,T.

Financial wealth follows the process:

Wt+1,s+1 =
eχt+1

β∗ [Wt,s + 1s≤Gwt − ct,s] ,

since a unit of the risky asset costs β∗ and therefore has return eχt+1 /β∗ (on the risky balanced growth
path).

Step 1. Optimal savings
To find the solution we consider a risky balanced growth path and start at the second to last stage of

life.
Since the individual does not work the last period of life, consumption must be (from the perspective

of the second-to-last period):

ct+1,T =
eχt+1

β∗ (Wt,T−1 + 1T−1≤Gwt − ct,T−1) ≡
eχt+1

β∗
(
Ŵt,T−1 − ct,T−1

)
,

which covers both the case where the individual works (T − 1 ≤ G) and the one where the individual
doesn’t. Ŵt,T−1 is consequently total wealth for the individual in the beginning of their T − 1 period of
life.
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The maximization problem is then

maxct,T−1

(
(1 − β)c1−σ

t,T−1 + β(1 − β) (β∗)σ−1 (Ŵt,T−1 − ct,T−1
)1−σ

E
(

e(1−θ)χt+1
) 1−σ

1−θ

) 1
1−σ

,

The first order conditions for this returns savings of

Ŵt,T−1 − ct,T−1 =
1

1 + β−1/σ (β∗)
1−σ

σ E
(
e(1−θ)χt+1

) σ−1
σ

1
1−θ

Ŵt,T−1 ≡ ŝT−1Ŵt,T−1,

with consumption of (1 − ŝT−1)Wt,T−1. This naturally replicates the savings expression of the two
period model except savings is out of accumulated wealth and not first-period earnings.

This returns utility of:

Vt,T−1 =

(
(1 − β) (1 − ŝT−1)

1−σ + β(1 − β) (β∗)σ−1 (ŝT−1)
1−σ E

(
e(1−θ)χt+1

) 1−σ
1−θ

) 1
1−σ

Ŵt,T−1 ≡ ν̂
1

1−σ

T−1Ŵt,T−1.

Consequently, both savings and utility scale with total wealth.
The maximization problem in this period is:

maxct,T−2

(
(1 − β)c1−σ

t,T−2 + βE
(

V1−θ
t+1,T−1

) 1−σ
1−θ

) 1
1−σ

where:
Vt+1,T−1 = ν̂

1
1−σ

T−1

{
eχt+1

β∗ (Wt,T−2 + 1T−2≤Gwt − ct,T−2) + (1 + g)eχt+11T−1≤Gwt+1

}
= ν̂

1
1−σ

T−1
eχt+1

β∗
{

Ŵt,T−2 − ct,T−2
}

,

which gives a first order condition of:

Ŵt,T−2 − ct,T−2 =
1

1 + (1 − β)1/σν̂
− 1

σ
T−1 (β∗)

1−σ
σ β−1/σEt(e(1−θ)χt+1)

σ−1
σ

1
1−θ

Ŵt,T−2 ≡ ŝT−2Wt,T−2

with

Vt,T−2 =

(
(1 − β) (1 − ŝT−2)

1−σ + ν̂T−1 (β∗)σ−1 (ŝT−2)
1−σ βE

(
e(1−θ)χt+1

) 1−σ
1−θ

) 1
1−σ

Ŵt,T−2 ≡ ν̂
1

1−σ

T−2Ŵt,T−2.

Continuing this progress allows us define {ŝs, ν̂s}T
s=1 iteratively as:

ŝs =
1

1 + (1 − β)1/σν̂−1/σ
s+1 (β∗)

1−σ
σ β−1/σEt(e(1−θ)χt+1)

σ−1
σ

1
1−θ

,

ν̂s = (1 − β) (1 − ŝs)
1−σ + ν̂s+1 (β∗)σ−1 (ŝs)

1−σ βE
(

e(1−θ)χt+1
) 1−σ

1−θ
,
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with v̂T = (1 − β), ŝT = 0 and:

Ŵt,s = Wt,s +
T

∑
k=s

1k≤Gwt (β∗(1 + g))k−s ,

where the second term is the future wage income discounted at the expected return on risky capital
1/β∗. We call Ŵt,s total wealth.

With this in hand we proceed to find the wealth for each generation.
Step 2: Financial wealth
With these functions in hand we can find the financial wealth (or debt) at each point in time for each

generation.
Consider first a person aged 1 at time t who has no initial financial savings. Their financial savings

at the end of their first period of life are st,s:

st,1 = wt − (1 − ŝ1)Ŵt,1 =

{
1 − (1 − ŝ1)

T

∑
k=1

1k≤G (β∗(1 + g))k−1

}
wt = λ1wt

Now consider a person aged 2 at time t. By the logic above they saved st,1 the previous period with
stochastic return of eχt /β∗. Consequently, their savings will be:

st,2 = wt12≤G +
eχt

β∗ λ1wt−1 − (1 − ŝ2)Ŵt,2

= wt12≤G +
1

β∗(1 + g)
λ1wt − (1 − ŝ2)

{
1

(1 + g)β∗ λ1wt +
T

∑
k=2

1k≤G (β∗(1 + g))k−2

}

= wt12≤G +
ŝ2

β∗(1 + g)
λ1wt − (1 − ŝ2)

{
T

∑
k=2

1k≤G (β∗(1 + g))k−2

}
≡ λ2wt

which consists of two parts: The financial savings from previous period (corrected for return and the
lower wage in the previous period) + current income from which consumption in period t is subtracted.
The ratio of current financial savings to current wage income is independent of time. We can iteratively
find all {λk}T

k=1 in the same manner.
In particular for period 3 we have:

st,3 = wt13≤G +
eχt

β∗ λ2wt−1 − (1 − ŝ3)Ŵt,3

Finally, to get total savings of the economy we need to correct for the growing population size. Con-
sider a time period at which the size of the youngest population is Lt,1 and the corresponding size of
older generations Lt,s = (1+ gL)

−s+1. Consequently letting Λ be the share of wage income that is saved.

Λ =

{
∑T

k=1 λk × (1 + gL)
−k+1

}
wtLt,1

wt ∑G
k=1(1 + gL)−k+1Lt,1

=

{
∑T

k=1 λk × (1 + gL)
−k+1

}
∑G

k=1(1 + gL)−k+1,
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which is independent of t
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