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Abstract

Since the 1980s top income inequality within occupations as diverse as bankers,

managers, doctors, lawyers and scientists has increased considerably. Such a broad

pattern has led the literature to search for a common explanation. In this paper,

however, we argue that increases in income inequality originating within a few oc-

cupations can“spill over” into others creating broader changes in income inequality.

In particular, we study an assignment model where generalists with heterogeneous

income buy the services of doctors with heterogeneous ability. In equilibrium the

highest earning generalists match with the highest quality doctors and increases

in income inequality among the generalists feed directly into the income inequal-

ity of doctors. We use data from the Decennial Census as well as the American

Community Survey from 1980 to 2014 to test our theory. Specifically, we identify

occupations for which our consumption-driven theory predicts spill-overs and oc-

cupations for which it does not and show that patterns align with the predictions

of our model. In particular, using a Bartik-style instrument, we show that an

increase in general income inequality causes higher income inequality for doctors,

dentists and real estate agents; and in fact accounts for most of the increase of

inequality in these occupations.
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1 Introduction

Since the 1980s the share of total earnings going to the top of the income distribution

has increased considerably. At the same time income inequality within the top has also

increased with a higher share of top earnings going to the very high earners. Moreover

this pattern holds within high-earning occupations so that the overall growth of top

income inequality is not simply due to the growth within particular occupations (Bakija,

Cole, and Heim, 2012). As argued by Kaplan and Rauh (2013), this broad pattern

suggests that a plausible explanation whether it be globalization, deregulation, changes

to the tax structure, or technological change, would have to apply to occupations as

diverse as financial managers, doctors, and CEOs. In this paper we argue that this need

not be the case by showing that exogenous increases in income inequality within one

occupation “spill over” into others through the former’s consumption, driving up income

inequality for a broader set of occupations.

This paper provides a model where changes in within-occupation income inequality

propagates to other occupations through consumption rather than competition for skill

in the broader labor market. We study an assignment model where generalists with

heterogeneous income buy the services of doctors with heterogeneous ability. In equilib-

rium the highest earning generalists match with the highest ability doctors and increases

in income inequality among the generalists feed directly into the income inequality of

doctors. Two conditions on the services provided by doctors are necessary for the equi-

librium to feature an assignment mechanism and thereby income inequality spillovers:

heterogeneity and non-divisibility in output (one high-ability doctor is not the same as

two decent-ability doctors). We focus on physicians, dentists and real estate agents who

meet these conditions and contrast them with occupations who do not. Using data from

the Decennial Census and the American Community Survey, we find that an increase in

general income inequality causes an increase in inequality for these occupations, with a

spillover elasticity ranging from 0.5 to 2.7. These occupations are important within the

top 1%, in fact Physicians are the most common Census-occupation in the top 1% in

2014.

We first present our baseline model and demonstrate that for occupations of hetero-

geneous ability where production is not scalable (that is, no mechanism exists that would

allow the more talented to scale up output) and consumption is non-divisible, the income

distribution is tightly linked to that of the general population. Specifically, generalists of

heterogeneous ability produce a homogeneous product in quantity proportional to their
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skill level. Besides this homogeneous product, each generalist consumes the services of

one doctor. Doctors also have heterogeneous ability but their ability translates propor-

tionately into the quality of the services they provide and not the quantity. Instead, all

doctors service the same number of patients. The abilities of both generalists and doc-

tors are Pareto distributed but with different parameters. The result is an assignment

model with positive assortative matching in which the highest ability generalists match

with the highest ability doctors. An exogenous mean-preserving spread in the income

inequality of generalists increases the number of high-earning generalists, increases the

demand for the best doctors and increases top income inequality among doctors as well.

In fact, in the special case of Cobb-Douglas utility, top income inequality of doctors

is entirely driven by the earnings distribution of generalists and is independent of the

underlying ability distribution of doctors.

We extend the model in three directions. First, we allow for occupational mobility

at the top: high-ability doctors can choose to be high-ability generalists and vice-versa.

Since changes in top income inequality for generalists completely translate into changes

in top income inequality for doctors when there is no occupational mobility, allowing

doctors to switch occupation or not has no impact on doctors’ inequality and the two

settings are observationally equivalent. Second, we consider two regions in one nation

that differ only in the top income inequality of generalists and allow patients to import

their medical services. We show that top income inequality among doctors for each

region must follow generalist top income for the most unequal region. This distinction

will be important for the empirical test: When a service is local, i.e. non-tradable,

spill-over effects will happen at the local level, whereas for tradable services the spill-

over effect will happen at the national level. Finally, we let doctors move across regions

and show that the most unequal region will attract the most able doctors, but, as in

the baseline model, doctors’ inequality is determined by general inequality in the region

where they eventually live. Hence the observed top income inequality of doctors is the

same whether they can move or not.

To test our model we take as a starting point the fact that top income inequality has

increased broadly across occupations. The solid line of Figure 1 shows that the relative

income of those in the top 0.1% relative to the 1% of the income distribution has risen

from 3.1 in 1979 to 4.3 in 2005. The pattern is similar for occupations as diverse as

doctors, real estate agents, and scientists and in fact holds for a number of occupations

with incomes mostly below the top 1% such as college professors and secretaries (this is
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not a result of large changes in the occupational distribution in the top 1% and top 0.1%.

Except for financial professionals whose weight in the top has increased substantially, the

distribution of the largest occupations in the top has remained relatively constant from

1979 to 2005). We test our theory using a combination of the Decennial Census and the

American Community Survey for every decade since 1980 and we focus on labor market

areas (an aggregation of commuting zones, Dorn; 2009) as the unit of analysis.1 We con-

struct measures of top income inequality that are specific to the year/occupation/labor

market area, but since the income data are top-coded for around 0.5 per cent of observa-

tions — and therefore significantly more for high-earning occupations — we impose an

assumption of a Pareto distributed right tail of the income distribution and use the expo-

nential parameter of the estimated Pareto distribution as an (inverse) measure of income

inequality. Our theory predicts which occupations will feature spill-overs: those with

non-divisibility in output. Furthermore, since we will focus on geographical variation

across the United States, our estimation methodology will only pick up spill-over effects

if they are local, that is if workers mostly service local clients. We classify occupations

into two groups: Those that meet these conditions (such as physicians, dentists and real

estate agents) and those that do not (such as financial managers, college professors and

secretaries.) Using panel data, in OLS regressions, we find that an increase in general

income inequality (excluding the occupation of interest) is positively correlated with an

increase in inequality for occupations in the first group, but mixed results for the other

occupations. Naturally state-specific changes in regulation, labor demand or taxes might

cause both occupation-specific income inequality to increase at the same time as general

income inequality. To establish a causal link, we use a Bartik (1991)-style instrument.

We construct a weighted average of nationwide inequality for the 20 occupations that are

the most represented in the top 5% nationwide (excluding the occupation of interest).

The weights correspond to the labor market area-specific relative importance of each

occupation in the beginning of our sample. In other words, we only exploit the changes

in labor market income inequality that arises from the occupational distribution in 1980

combined with the nationwide trends in occupational inequality. This weighted average

serves as our instrument for general inequality in the area in question.

Using this instrument, we find a very clear distinction between the first group and

other occupations. An increase in general income inequality at the local level causes an

1At the moment we use the publicly available data downloaded from IPUMS (Ruggles et al., 2015).
We are in the process of obtaining access to the uncensored data from the Decennial Census as well as
the American Community Survey.
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increase in inequality for physicians, dentists and real estate agents, who operate in local

markets. The parameter estimates are consistent with the majority of the increase in

income inequality for these occupations being explained by increases in general income

inequality. On the other hand, we find that local general income inequality does not

spill over to financial managers, college professors and secretaries. This contrasts our

theory of consumption-driven spill-overs of income inequality with a theory driven by

broad increases in demand for skills: Such a theory would predict spill-over effects across

a broad set of occupations, whereas we predict such changes only for local non-divisible

occupations, in line with the empirical evidence.

The increase in top income inequality has inspired substantial scholarship (see no-

tably Piketty and Saez, 2003 and Atkinson, Piketty and Saez, 2011). This literature

has established that at the top, the income distribution is well-described by a Pareto

distribution (see Guvenen, Karahan, Ozkan, and Song, 2015, for some of the most re-

cent evidence, and Pareto, 1896, for the earliest). Further, Jones and Kim (2014) show

that the increase in top income inequality is linked with a fattening of the right tail of

the income distribution, which corresponds to a decrease in the shape parameter of the

Pareto distribution. This literature is related, but distinct from the large literature on

skill-biased technological change and income inequality which seeks to explain changes in

income inequality throughout the income distribution and primarily across occupations

(Goldin and Katz, 2010; Acemoglu and Autor .)

More specifically, our paper builds on the literature on “superstars”, which originated

with Rosen (1981), who explains how small differences in talent may lead to large differ-

ences in income. The key element in his model is an indivisibility of consumption result

which arises from a fixed cost in consumption per unit of quantity. This leads to a“many-

to-one”assignment problem as each consumer only consumes from one performer (singer,

comedian, etc.), but each performer can serve a large market (see also Sattinger, 1993).2

In that framework, income inequality among performers increases because technological

change or globalization allows the superstars to serve a much larger market, that is to

scale up production. Specifically, if w(z) denotes the income of an individual of talent

z, p(z) denotes the average price for his services, and q(z) is the quantity provided, such

that w(z) = p(z)q(z), “superstars” are mostly characterized by very large markets (a

large q(z)). This makes such a framework poorly suited for occupations where output is

not easily scalable, such as doctors. In contrast we focus on such occupations and study

2Adding network effects, Alder (1985) goes further and writes a model where income can drastically
differ among artists of equal talents.
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an assignment model that is “one-to-one” (or more accurately “a constant-to-one”) where

superstars are characterized by a large price for their services p(z). This makes our paper

closer to Gabaix and Landier (2008) who build a“one-to-one”assignment model to study

CEO’s compensation. They argue that since executives’ talent increases the overall pro-

ductivity of firms, the best CEO’s are assigned to the largest firms, and show empirically

that the increase in CEO’s compensation can be fully attributed to the increase in firms’

market size (Grossman (2007) builds a model with similar results). Along the same line,

Määttänen and Terviö (2014) build an assignment model to study house price dispersion

and income inequality, they calibrate their model to six US metropolitan areas and find

that the increase in inequality has led to an increase in house price dispersion. Gabaix,

Lasry, Lions and Moll (2015) argue that the fast rise in both the share of income held

by the top earners and income inequality among these earners requires aggregate shocks

to the return of high income earners (“superstars shocks”). Our analysis suggests that

even if such shocks only directly affect some occupations they will spill over into other

occupations. The original shock may arise from technological change in occupations

where span of control features are pervasive as suggested by Geerolf (2015).3 In addi-

tion, several papers have looked at how globalization can increase the share of income

going to the top earners and also increase inequality among these earners (see Manasse

and Turini, 2001; Kukharskyy, 2012; Gesbach and Schmutzel, 2014 and Ma, 20154).

Beyond “superstars” effects, the economic literature has investigated several possible

explanations for the rise in top income inequality: for instance, Jones and Kim (2014)

and Aghion, Akcigit, Bergeaud, Blundell and Hémous (2015) look at the role played

by innovation;5 Piketty (2014) argues that top income inequality has increased because

of the high returns on capital that a concentrated class of capitalists enjoy; Piketty,

Saez and Stantcheva (2014) argue that low marginal income tax rates divert manager’s

3Geerolf (2015) builds a span of control model to micro-found the fact that firms’ size distribution
follows Zipf’s law. His model naturally leads to“superstars”effects and a bounded distribution of talents
can lead to an unbounded distribution of income. Similarly, Garicano and Hubbard (2012) build a span
of control model which features positive assortative matching as the most skilled individuals become
the most skilled managers who manage large firms which employ the most skilled workers. They use
data from the 1992 Census of services on law offices to find support for their model. Yet, span of control
issues do not seem directly relevant for doctors or real estate agents.

4Yet, none of these papers are able to generate a change in the shape parameter of the Pareto
distribution of top incomes through globalization.

5Jones and Kim (2014) build a model close to the superstars literature where the distribution of
income for top earners is Pareto and results from two forces: the efforts of incumbents to increase their
market share and the innovations of entrants who can replace incumbents. Using a panel analysis of US
states, Aghion et al. (2015) show empirically that an increase in innovation leads to more top income
inequality.
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compensation from perks to wages and increase their incentive to bargain for higher

wages and Philippon and Reshef (2012) emphasize the role played by the financial sector.

Section 2 presents the theoretical model, Section 3 describes our empirical strategy

and data, Section 4 gives our empirical results and Section 5 concludes.

2 Theory

We first present our baseline model and demonstrate that for occupations of heteroge-

neous ability where production is not scalable (that is, no mechanism exists that would

allow the more talented to scale up output) and consumption is non-divisible, the in-

come distribution is tightly linked to that of the general population. To help guide our

empirical analysis and demonstrate when we would expect to see spill-over effects in the

data, we then relax a number of assumptions. Throughout “doctors” will represent occu-

pations where the most skilled workers can produce a good of higher quality but cannot

serve more customers than the less skilled, and where customers cannot divide their

consumption across several producers: one high-ability doctor is not the same as two

low-ability doctors. Besides doctors, prominent examples are dentists, college professors,

and real estate agents.

2.1 The baseline model

We consider an economy populated by two types of agents: generalists of mass 1 and

(potential) doctors of mass µd.

Production. Generalists produce a homogeneous good, x, which serves as the

numeraire. They differ in their ability to produce such that a generalist of ability x can

produce x units of the homogeneous good. The ability distribution is Pareto such that

a generalist is of ability X > x with probability:

P (X > x) =
(xmin

x

)αx
,

with lower bound xmin = αx−1
αx

x̂ and shape αx > 1, which keeps the mean fixed at x̂

when αx changes. The parameter αx is an (inverse) measure of the spread of abilities.

We will keep αx exogenous throughout and will capture a general increase in top income

inequality by a reduction in αx. Doctors produce health services and can each serve

λ customers, where we impose λ ≥ max (1, 1/µd) such that there are enough doctors
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to serve everyone. Potential doctors differ in their ability z, according to a Pareto

distribution of shape αz such that they will have ability Z > z with probability:

P (Z > z) =
(zmin

z

)αz
,

where all potential doctors can alternatively work as generalist and produce the homoge-

neous good with ability xmin (see Section 2.2 for a model where doctors’ and generalists’

abilities are perfectly correlated). Though the ability of a doctor does not change how

many patients she can take care of, it increases the utility benefit that patients get from

the health services that are provided.

Consumption. Generalists consume the two goods according to the Cobb-Douglas

utility function

u (z, c) = zβzc1−βz , (1)

where c is the consumption of homogeneous good and z is the quality of the health

care (equal to the ability of the doctor providing it).6 The notion that medical services

are not divisible is captured by the assumption that each generalist needs to consume

the services of exactly one doctor. This implies that there will not exist a common

price per unit of quality-adjusted medical services. For simplicity, doctors only consume

the homogeneous good, an assumption that can easily be generalized (see section 2.4.1

below).

2.1.1 Equilibrium

Generalists. Since a generalist of ability x produces x units of the consumption good,

their income must be distributed like their ability. The consumption problem of gener-

alist of ability x can then be written as:

max
z,c

u(z, c) = zβzc1−βz ,

st ω (z) + c = x, (2)

where ω (z) is the price of one unit of medical services by a doctor of ability z.

Taking first order conditions with respect to the quality of the health services con-

6For our purpose, one should think of z as the perceived quality of health care by the consumers at
the time when they decide on a doctor. Whether this is the “true” quality of the health care provided
or not does not matter for the predictions of the model.
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sumed and the homogeneous good gives:

ω′ (z) z =
βz

1− βz
(x− ω (z)) . (3)

Since no generalist spends all her income on health, this equation immediately implies

that in equilibrium, ω (z) must be increasing such that doctors of higher ability earn

more per unit of medical services. Importantly, the non-divisibility of medical services

implies that doctors are “local monopolists” in that they are in direct competition only

with the doctors with slightly higher or lower ability. As a consequence, doctors do not

take prices as given implying that ω(z) will in general not be a linear function of z.

As a result, the equilibrium involves positive assortative matching between general-

ists’ income and doctors’ ability. We denote by m (z) the matching function such that a

doctor of ability z will be hired by a generalist whose income is x = m(z) and m(z) is

an increasing function (see Appendix A.1 for a proof).

Doctors. Since there are (weakly) more doctors than needed the least able doctors

will choose to work as generalists. We denote by zc the ability level of the least able

doctor who decides to provide health services so that m (z) is defined over (zc,∞) and

m (zc) = xmin (the worst doctor is hired by a generalist with income xmin). Then, market

clearing at all quality levels implies that

P (X > m (z)) = λµdP (Z > z) , ∀z ≥ zmin (4)

There are µdP (Z > z) doctors with an ability higher than z, each of these doctors can

serve λ patients, and there are P (X > m (z)) patients whose income is higher than

m (z). If λµd > 1 then zc > zmin and if λµd = 1 then zc = zmin.

Using the assumption that abilities are Pareto distributed, we can use (4) to obtain

the matching function as:

m (z) = xmin (λµd)
− 1
αx

(
z

zmin

)αz
αx

. (5)

Intuitively if αz > αx, so that top talent is ‘scarcer’ among doctors than generalists then

the matching function is convex because it must assign increasingly relatively productive

generalists to doctors. As m (zc) = xmin, we obtain the ability of the least able doctor

working as a doctor: zc = (λµd)
1
αz zmin, which is independent of the generalists’ income

distribution.
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We denote by w (z) the income of a doctor of ability z and note that w(z) = λω(z)

since each doctor provides λ units of health services. Furthermore as a potential doctor

of ability zc is indifferent between working as a doctor and in the homogeneous good

sector earning a wage equal to xmin, we must have w (zc) = xmin. Now plugging the

matching function in (3), we obtain the following differential equation which must be

satisfied by the wage function w (z):

w′ (z) z +
βz

1− βz
w (z) =

βz
1− βz

xmin

(
λαx−1

µd

) 1
αx
(

z

zmin

)αz
αx

. (6)

using the boundary condition at z = zc, we obtain a single solution for the wage profile

of doctors which obeys (see Appendix A.2):

w (z) = xmin

[
λβzαx

αz (1− βz) + βzαx

(
z

zc

)αz
αx

+
αz (1− βz) + βzαx (1− λ)

αz (1− βz) + βzαx

(zc
z

) βz
1−βz

]
.

(7)

One can show that w (z) is increasing in doctor’s ability z as expected, with w (zc) =

xmin. Intuitively, equation (7), consists of two parts: The first term which dominates

for large z/zc and ensures an asymptotic Pareto distribution and the second term which

fulfills the indifference condition for the least able active doctor. Hence, for z/zc large,

we get that

w (z) ≈ xmin
λβzαx

αz (1− βz) + βzαx

(
z

zc

)αz
αx

. (8)

Therefore, the wage schedule must be convex in z if αz > αx. To understand the

intuition, consider again the case where top-talented doctors are scarce (αz > αx). This

implies a fatter tail among generalists than doctors, such that a generalist of twice the

income does not have a doctor of twice the ability. Hence, a linear schedule ω(z) ∝ z

cannot be an equilibrium as the Cobb-Douglas utility function would require a constant

share spent on medical services, which would imply double the payment to a doctor

that is not twice as good. For the same reason, the schedule cannot be concave when

αz > αx.

We define Pdoc (Wd > wd) as the probability that the wage of an actual doctor is

higher than w (that is we only take into account the potential doctors who actually

choose to work as doctors). We get that Pdoc (Wd > wd) = (zc/w
−1 (wd))

αz , so that
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using (8), for wd large enough:

Pdoc (Wd > wd) ≈
(

xminλβzαx
αz (1− βz) + βzαx

1

wd

)αx
. (9)

That is, the income of (actual) doctors is distributed in a Pareto fashion at the top, with

a shape parameter inherited from the generalists, independent of the spread of doctor

ability, αz. Similarly, the income distribution of potential doctors (denoted Ppot doc)

must then obey for wd large enough Ppot doc (Wd > wd) ≈ 1
λµd

(
xminλβzαx

αz(1−βz)+βzαx
1
wd

)αx
. In

particular, a decrease in αx directly translates into a decrease in the Pareto parameter

for doctors’ income distribution: an increase in inequality among generalists leads to

an increase in inequality among doctors. In other words, the increase in top income

inequality spills over from one occupation (the generalists) to another (doctors). At the

top it also increases the income of doctors—as a decrease in αx leads to an increase in

P (Wd > wd) for wd high enough.7 Formally:

Proposition 1. Doctors’ incomes are asymptotically Pareto distributed with the same

shape parameter as the generalists’. In particular an increase in top income inequality

for generalists increases top income inequality for doctors.

Further, a decrease in the mass of potential doctors µd (or an increase in the mass

of generalists which here has been normalized to 1) does not affect inequality among

doctors at the top but it increases the mass of active doctors (zc decreases) and their

wages (as w (z) increases if zc decreases).

Health expenditures. Health care prices increase sharply at the top, in fact,

thanks to the Cobb-Douglas assumption, we obtain that rich generalists spend close to a

constant fraction of their income on health. Formally, a generalist with income x spend

w (m−1 (x)) /λ in health services. Using (5), we obtain that his health spending of h (x)

must obey:

h (x) =
βzαx

αz (1− βz) + βzαx
x+

1

λ

αz (1− βz) + βzαx (1− λ)

αz (1− βz) + βzαx
xmin

(
x

xmin

)−αx
αz

βz
1−βz

. (10)

Note that health care is a necessity if αz (1− βz) + βzαx (1− λ) > 0. This follows from

7Not all doctors benefit though, as we combine a decrease in αx with a decrease in xmin to keep
the mean constant. As a result the least able active doctor, whose income is xmin, sees a decrease in
her income. Had we kept xmin constant so that a decrease in αx also increases the average generalist
income, then all doctors would have benefited.
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the price gradient consumers face (equation 7) which follow from the prices low-quality

doctors charge — determined by the indifference condition for the lowest doctor zc —

and the pricing the high-quality doctors charged — which is determined purely by the

parameters of the utility function and the ability distributions. Specially, consider the

case in which αz (1− βz)+βzαx (1− λ) > 0: a doctor in the right end of the tail servicing

a patient of income, x, earns λβzαx/(αz(1 − βz) + βzαx)x. If the lowest quality doctor

were to charge the same, she would earn λβzαx/(αz(1− βz) + βzαx)xmin < xmin, which

would be insufficient to compensate her for not working as a generalist and earning

xmin. Consequently, she must be charging a larger share of patient income, and since

everybody consumes the services of exactly one doctor, medical services are a necessity.

This is more likely to be the case when the number of patients a doctor can service, λ,

is low or when αz > αx such that generalists have fatter tails than doctors and doctors

can charge a smaller part of patient income.

Welfare inequality. The lack of a uniform quality-adjusted price implies that

prices vary along the income distribution. Deaton (1998) argued that heterogeneity in

consumption patterns implies that people at different points of the income distribution

can face price changes that are different from that faced by a “Consumer Price Index-

representative household”. In the following we show that taking this into account implies

that a given increase in income inequality translates into a lower increase in welfare

inequality. The assignment mechanism implies that as inequality increases, the rich

generalists cannot obtain better health services (in fact they pay more for health services

of the same quality), this mechanism limits the welfare increase in inequality. Moretti’s

2013 work on real wage inequality across cities can be viewed as proposing a similar

assignment mechanism causing high earners to locate in high-cost cities.

To assess this formally, we use as a consumption-based measure of welfare the ho-

mogeneous good consumption eq (x) which, when combined with a fixed level of health

quality (namely zc) gives the same utility to the generalist as what she gets in the mar-

ket. That is we define eq (x) through u (zc, eq (x)) = u (z (x) , c (x)). We then obtain (see

Appendix A.3):

Remark 1. For x large enough, the welfare measure eq is Pareto-distributed with shape

parameter αeq ≡ αx
1+αx

αz

βz
1−βz

so that d lnαeq
d lnαx

= 1

1+αx
αz

βz
1−βz

, implying that an increase in

inequality for generalists’ income translates into a less than proportional increase in

their welfare inequality. The mitigation is stronger when health services matter more

(high βz ) or when doctors’ abilities are more unequal (low αz).
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Taking stock. Proposition 1 establishes the central theoretical result of our paper.

However, for the empirical analysis it is important to establish what assumptions are

necessary for the“spill-over” result and which are not. Consequently, in the following, we

first establish the necessity of the “non-divisibility” assumption by introducing brewers

who produce a divisible good, beer, and show that income inequality of brewers is

independent of that of generalists. Second, we show that the predictions of our model

are unchanged if we allow mobility across occupations such that high-earning doctors

can work as high-earning generalists. Third, in preparation for our empirical analysis, we

introduce a multi-region model. Naturally, without trade or migration between regions

top income inequality among doctors must be determined by local generalist income

inequality. However, this remains true even if we allow doctors to move across regions.

If we instead, allow for the cross-region trade of medical services income inequality for

doctors will be the same for all regions. This distinction between “local” services that

cannot be traded across regions and“non-local”services that can will be important for the

empirical section which is guided by local variation in general income inequality. Finally,

we allow doctors to consume medical services and use a more general utility function

and ability distributions that are only Pareto in the tail and show that the spill-over

effect survive, although it demonstrates that the prediction of a spill-over elasticity of 1

from Proposition 1 does not generalize.

2.1.2 The role of the assortative matching mechanism

To highlight the specificity of our mechanism, we add “brewers” to the system. Potential

brewers can produce the divisible good, beer. They differ in their ability such that

a brewer of ability y can produce quantity y of (quality-adjusted) beer. Their ability

distribution is Pareto with shape αy, that is a brewer is of ability Y > y with probability

P (Y > y) =

(
ymin
y

)αy
,

and αy is kept constant. If potential brewers do not produce beer they produce xmin

units of the homogeneous good. We modify the utility function such that u(z, c, y) =

zβzc1−βz−βyyβy . The first order condition for beer consumption together with a market

clearing equation determine the price of beers. As beer is divisible, the beer price p

must be taken as given by each producer and their income will simply be given by py.

As a result, the income of active beer producers is Pareto distributed with a shape
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parameter αy. A change in inequality among generalists can only affect active producers

proportionately.8 Moreover since beers are divisible, the distribution of the“real” income

inequality is unaffected by the presence of beer and the difference between nominal and

real income is only driven by the presence of doctors: Remark 1 still applies and αeq does

not change. Consequently, divisibility is essential for spill-overs through consumption.

2.2 Occupational mobility

Above we assumed that a potential doctor working as a generalist makes the minimum

amount possible as a generalist: xmin. In reality it is quite plausible that those succeeding

as doctors would have succeeded in other occupations as well. To capture this we assume

that there is perfect correlation between abilities as a doctor and as a generalist. We

keep the model as before, except we assume that there is a mass 1 of agents who decide

whether they want to be doctors or generalists. We rank agents in descending order

of ability and use i to denote their rank (so that the most able agent has rank 0 and

the least able has rank 1). For two agents i and i′ with i < i′, i will be better both

as a generalist and as a doctor than i′. We assume that both ability distributions are

Pareto with parameters (xmin, αx) for generalist and (zmin, αz) for doctors. An agent

i can choose between becoming a generalist earning x (i) or being a doctor providing

health services of quality z (i) and earning w (z (i)). Those working as doctors also need

the services of doctors. We assume that λ > 1 to ensure that everyone can get health

services. By definition of the rank we have that the counter-cumulative distribution

functions (1- the cumulative distribution function) for x and z obey:

Gx (x (i)) = Gz (z (i)) = i.

For individuals of a sufficiently high level of ability, some will choose to be doctors

and others to be generalists. That is for i low enough, agents must be indifferent between

becoming a doctor or a generalist: w (z (i)) = x (i), which directly implies that, for z

high enough, the wage function must satisfy:

w (z) = G
−1
x

(
Gz (z)

)
,

8As showed in Appendix A.4, a decrease in αx increases p for parameters where all potential brewers
are actively producing beer. If the extensive margin of brewers is operative the (mean-preserving) in-
crease in income inequality will lower xmin and encourage a supply increase of brewers. As a consequence
the effect on beer prices, p, from a decrease in αx is ambiguous.
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which — since both ability distributions are Pareto — can be written as:

w (z) = xmin

(
z

zmin

)αz
αx

. (11)

Doctor wages grow in proportion to what they could earn as a generalist.

Let µ (z) ∈ (0, 1) denotes the share of individuals able to provide heath services of

quality z who are doctors. the share of agents with ability z that work as doctors. For z

sufficiently high that individuals of rank Gz (z) and below and their patient work both

as generalist and doctors, market clearing implies(
xmin

m (z)

)αx
=

∫ ∞
z

λµ (ζ) gz (ζ) dζ, (12)

where m (z) denotes the income (earned either as a generalist or a doctor) of the patient

of a doctor of quality z.

The first order condition on health care consumption (3) still applies, and together

with (11) and (12) it implies that:∫ ∞
z

µ (ζ)αzζ
−αz−1dζ = λαx−1z−αz

(
αz
αx

+
βz

1− βz

)−αx
.

Differentiating with respect to z, we obtain that µ is a constant given by µ = λαx−1
(
αz
αx

+ βz
1−βz

)−αx
.

Intuitively, with a constant µ, doctors’ wages grow proportionately with the patient’s

income, which is in line with the Cobb-Douglas assumption.

Therefore, we have that Pdoc (Wd > wd) = P (Z > w−1 (wd)) for wd high enough

so that the observed distribution for doctor wages is Pareto with a shape parameter

αx: Proposition 1 still applies (in fact the distribution is now exactly Pareto above a

threshold). In Appendix A.7, we solve the full model and show that individuals of a

sufficiently low ability will all choose one occupation, while above a given threshold,

they work in both occupation but with a constant µ. Further, if the distributions of x

and z are only asymptotically Pareto, then our results remain true asymptotically, so

that Proposition 1 applies.

Note, that in terms of observed top income inequality the model where agents can

move and the one where agents cannot are observationally equivalent: doctor top income

inequality perfectly traces that of the generalists. This is so because even when doctors

are not allowed to shift occupation, the relative reward to the very best doctors adjusts
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correspondingly with the shift for generalists.

2.3 Mobility and open Economy

So far we assumed a closed economy. With our empirical analysis driven by local varia-

tion in income inequality, we here consider an economy with more than one region and

analyze a case in which medical services can be traded between regions and a case in

which doctors can move across regions.

2.3.1 Tradable health care

We consider the baseline model of section 2.1. We now assume that there are several

regions, s = 1, .., S and we allow some patients (a positive share of generalists in all

regions) to purchase their medical services across regions to get health care services.

The distribution of potential doctors’ ability is the same in all regions (and so is the

parameter λ). The other parameters, and in particular the Pareto shape parameter of

generalists’ income αsx is allowed to differ across regions. The cost of health care services

must be the same everywhere, otherwise, the generalists who can travel would go to

the country with the cheapest health care. Since top talented potential doctors work

as doctors (instead of being generalists with income xsmin), they must all earn the same

wage. In all regions, the income distribution of patients is asymptotically Pareto with

parameter min
s
αsx, because at the very top, overall income income inequality follows the

income inequality of the most unequal region. Using a logic identical to that in section

2.2, we get that in all regions, doctors’ income is asymptotically Pareto with shape

parameter min
s
αsx. In other words, income inequality for generalists in the most unequal

region spills over to doctors in all regions.

Empirically, whether the service provided is “local”, i.e. non-tradable or “non-local”,

i.e. tradable, will depend on the occupations of interest and we will use the results of

this section and the previous ones to guide our empirical analysis.

2.3.2 Doctors moving

Here as well, we consider the baseline model of section 2.1, but we now assume that

there are 2 regions A and B (although the results can be generalized) and that doctors

can move across regions, but that medical services are non-tradable and patients cannot

move (when doctors are mobile and medical services tradable the geographic location
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of agents is undetermined and we have no empirical predictions). The two regions are

identical except for the ability distribution of generalists, which is Pareto in both but

with possibly different means and shape parameters.9 Without loss of generality, we

assume that αAx < αBx , that is region A is more unequal than region B.

With no trade in goods between the two regions, we can normalize the price of

the homogeneous good to 1 in both. As doctors only consume the homogeneous good,

doctors’ nominal wages must be equalized in the two regions. As a result the price of

health care of quality z must be the same in both regions, which from the first order

condition on health care consumption, implies that the matching function is the same:

doctors of quality z provide health care to generalists of income m (z) in both regions.

Moreover, the least able potential doctor who decides to become a doctor must have the

same ability zc in both regions.

We define by ϕ (z) the net share of doctors initially in region B with ability at least

z who decide to move to region A. Then, labor market clearing in region A, implies that

for z ≥ zc, (
xAmin/m (z)

)αAx = λµd (1 + ϕ (z)) (zmin/z)αz . (13)

There are initially µd (zmin/z)αz doctors with ability at least z in each region and by

definition, a share ϕ (z) of those move from region A to region B. Since each doctor

can provide services to λ patients we obtain that, after doctors have relocated, the total

supply over a quality z in region A is given by the right-hand side. Total demand

corresponds to region A patients with an income higher than m(z), of which there are

P (X > m (z)). The same equation, replacing ϕ by −ϕ, holds in region B:

(
xBmin/m (z)

)αBx = λµd (1− ϕ (z)) (zmin/z)αz . (14)

Since the two regions are of equal size, total demand for health services must be the

same and on net, no doctors move: ϕ (zc) = 0. On the other hand, most rich patients

are in region A (as αAx > αBx ), as doctor’s income increases with the income of their

patient, then nearly all the most talented doctors will eventually locate in region A, that

is: lim
z→∞

ϕ (z) = 1. Therefore, we obtain that in region A, the distribution of doctors’

ability after relocation is asymptotically Pareto, so that as in the baseline model, doctors’

income will be asymptotically distributed in a Pareto way with a shape parameter equal

9Our results directly generalize to a case where the two regions do not have the same mass of potential
doctors and generalists.
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to αAx .

In region B, doctors of a given quality level earn the same as in region A. That is the

income of doctors initially in region B is still distributed in a Pareto way with coefficient

αAx . However, after the move, the share of doctors that stay in region B decreases with

their quality. Using (13) and (14), we get that 1− ϕ (z) ∝ zαz(1−α
B
x /α

A
x ). Therefore, the

ex-post talent distribution of doctors in region B is still Pareto but with a coefficient

α′z now given by α′z = αzα
B
x /α

A
x . As in the baseline model, the distribution of income

for doctors who stay must be asymptotically Pareto with a shape Parameter αBx .10 We

obtain (formal proof in Appendix A.7.1):

Proposition 2. Once doctors have relocated, the income distribution of doctors in region

A is asymptotically Pareto with coefficient αAx , and the income distribution of doctors in

region B is asymptotically Pareto with coefficient αBx .

Consequently, whether doctors can move or not does not alter the observable local

income distribution, although it does matter considerably for the unobservable local

ability distribution. Consequently, for our empirical analysis we need not take a stand on

which assumption is the most reasonable and we cannot empirically distinguish between

them using data on income inequality.

Finally, we show that our analysis does not depend on the simplifying assumptions

made in the baseline model of Section 2.1, although the result of Proposition 1 that the

spill-over must have an elasticity of 1 does not carry through.

2.4 Utility Function and Ability Distribution

2.4.1 Doctors consume medical services and ability distribution is only

Pareto distributed in the tail

We now alter the model so there is a mass 1 of agents a fraction, µd, of which are

potential doctors. The technology for health services is the same as before (and we now

assume that λ > 1/µd). Agents not working as doctors produce a composite good which

we take as the numeraire. Contrary to the baseline model above all agents have the

same utility function (1).

10To see that there is no contradiction, note that the baseline model predicts that the income of

individual z, w (z) ∝ z
α′
z

αBx but
α′
z

αBx
= αz

αAx
, so we also have w (z) ∝ z

αz
αAx and doctors do indeed earn the

same in both regions.
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The equilibrium results in a wage distribution. We assume that this distribution and

also the distributions of skills for potential doctors are asymptotically Pareto. Therefore

we can write

Px (X > x) = Gx (x)Gx,x (x) ,

where Gx,x (x) is the conditional counter-cumulative distribution above x and Gx (x) is

the unconditional counter-cumulative distribution, and for x large enough we have

Gx (x, x) ≈ (x/x)αx ,

with αx > 1. The same holds for doctors’ talents z (moreover, potential doctors can

work as generalists with the lowest productivity xmin as an alternative).

As before solving for the consumer problem leads to the differential equation (3).

Furthermore since health care services are not divisible, the equilibrium also features

assortative matching and we still denote the matching function m (z). Market clearing

at every z can still be written as (4). The least able potential doctor who actually works

as a doctor will have ability zc = G
−1
z (1/λµd). Therefore zc is independent of αx. As a

result we get that (4) implies that m (z) is defined by m (z) = G
−1
x

(
Gz,zc (z)

)
.

For z above some threshold, z, both doctors’ talents and incomes are approximately

Pareto distributed, which allows us to rewrite the previous equation as:

Gx (m (z)) (m (z) / (m (z)))αx ≈ Gz,zc (z) (z/z)αz ,

which gives

m (z) ≈ Bz
αz
αx with B = m (z)

(
Gx (m (z))

Gz,zc (z) zαz

) 1
αx

.

Plugging this in (3) we can rewrite the differential equation as:

w′ (z) z +
βz

1− βz
w (z) ≈ βz

1− βz
λBz

αz
αx .

Therefore for z large enough, we must have (see Appendix A.5 for a rigorous derivation):

w (z) ≈ βzαx
αz (1− βz) + βzαx

λBz
αz
αx . (15)

From this we get (as above) that for wd large enough, doctors’ income is distributed

18



according to

P (Wd > wd|wd > wd) ≈
(
wd
wd

)αx
, (16)

that is doctors’ income follows a Pareto distribution with shape parameter αx. Proposi-

tion 1 still applies: a decrease in αx will directly translate into an increase in top income

inequality among doctors.

2.4.2 The role of the Cobb-Douglas utility function

We keep the same model as just introduced, but we replace the utility function of

equation (1) with:

u(z, c) =
(
βzz

ε−1
ε + βcc

ε−1
ε

) ε
ε−1

, (17)

with ε 6= 1. As before, the first order conditions gives the differential equation:

∂u/∂z = ω′ (z) ∂u/∂c. (18)

Since CES exhibit positive cross partial derivatives, we know that the equilibrium fea-

tures positive assortative matching. Therefore, with income and ability asymptotically

Pareto, the matching function still obeys (5). Using (17), combining (18) and (5), and

using that w (z) = λω (z), we find that for high levels of z the wage function obeys a

differential equation given by

w′ (z) ≈ λ
ε−1
ε
βz
βc
z−

1
ε

(
λBz

αz
αx − w (z)

) 1
ε
. (19)

We solve for this equation in Appendix A.6 and we prove:

Proposition 3. i) Assume that ε > 1. Then for αx ≥ αz, wages of doctors are asymp-

totically Pareto distributed with exponential parameter αw = αx. For αx < αz, wages of

doctors are asymptotically Pareto distributed with αw = αz

(αzαx−1)
1
ε
+1
.

ii) Assume that ε < 1. Then for αx >
αz
1−ε , wages of doctors are bounded. For αx = αz

1−ε ,

wages of doctors are asymptotically exponentially distributed. For αz < αx <
αz
1−ε , they

are asymptotically distributed with αw = αz

(αzαx−1)
1
ε
+1

. For αx ≤ αz, they are asymptoti-

cally Pareto distributed with αw = αx

Therefore, when doctors’ income distribution is Pareto, we still obtain that a reduc-

tion in αx leads to a reduction in αw (that is an increase in general top income inequal-

ity increases top income inequality among doctors), although the elasticity may now be
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lower than 1 (it can naturally not be asymptotically higher than 1 since that would imply

high-paying generalists spending more than their income on medical services). Further,

a decrease in αx also reduces the size of the parameter space for which doctors’ wage

distribution is bounded (which corresponds to a situation where top income inequality

for doctors is very low).

To understand intuitively the results of Proposition 3, consider first the case where

αz > αx: that is where the tail of the ability distribution of generalists is fatter than that

of doctors, implying a shortage of doctors at the top. This must mean a convex pricing

schedule for medical services. If ε > 1, health services and the homogeneous good are

substitute, so that the expenditure share on health services declines with income. As a

result, w (z) cannot grow as fast as the income of the generalist who pays the services

of doctor z, namely m (z), which grows as z
αz
αx , implying less income inequality among

the top doctors than the top generalists (a higher Pareto exponential parameter). On

the contrary if ε < 1, then richer generalists are forced to spend an increasing amount

(eventually all their resources) on health services, m (z) and w (z) grow at the same rate,

so that doctor’s income is Pareto distributed with coefficient αx. The reverse holds when

doctors are relatively abundant at the top (i.e. when αz < αx), except that with ε < 1,

doctors’ income can even be bounded.

2.5 Empirical prediction

To summarize, our model makes the following predictions:

1. An increase in general inequality will lead to an increase in inequality for doctors

if they service the general population directly and their services are non-divisible.

2. This is true, whether doctors can move across regions or not, and whether doc-

tors’ ability is positively correlated with the income they would get working in

alternative occupations or not.

3. If patients can easily travel, doctors’ income in each region does not depend on

local income inequality.

20



3 Empirical Strategy and Data

3.1 Empirical strategy

We are centrally interested in the causal effect of general top income inequality in a

region s on the top income inequality of a particular subgroup i in region s. Since our

data are top censored, we make the distributional assumption that the right tail of the

income distribution is Pareto distributed: P (X > x) = (x/xmin)−α above some cut-off

xmin and use 1/α as a our measure of income inequality. Specially, for such a distribution

the relative income of somebody at the 99th percentile relative to somebody at the 95th

percentile is 51/α and the Gini-coefficient is (2α − 1)−1. Guvenen, Karahan, Ozkan,

and Song (2015) and Jones and Kim (2014) also employ 1/α as a measure of income

inequality.

Using this, the regression of interest is:

log(1/αo,t,s) = γs + γt + βlog(1/α−o,t,s) +Xt,sδ + εo,t,s, (20)

where 1/αo,t,s is top income inequality for occupation i at time t for geographical area s

and 1/α−o,t,s is the corresponding value for the general population except i at time t in

geographical area s, γs is a dummy for the geographical area, γt is a time dummy, and

Xt,s are a vector of controls, in particular population of labor market area and average

income. We are centrally interested in β which measures the elasticity of top income

inequality for our occupation of interest with respect to the general income inequality.

We will focus on labor market areas, which are aggregations of commuting zones (Dorn,

2009) and can generally be driven through in a matter of a few hours, i.e. Los Angeles

or New York City. Central results carry through if we instead use States as the unit of

analysis.

We focus on a number of occupations, but are limited by the fact that our analysis

requires a relatively high number of observations. We split these occupations into two

groups: First, we focus on occupations whose output is non-divisible and who primar-

ily operate in local markets: physicians, dentists and real estate agents. Admittedly,

some patients do travel for special medical treatment. To the extent that this creates an

integrated market, this would create a downward bias in our estimate of the spill-over ef-

fects. We contrast these with other occupations who have also seen increases in income

inequality, but that do not satisfy these conditions: college professors who, although
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they do provide a non-divisible, do not operate in a local market (at least not in the

right tail of the distribution), secretaries, who although they do operate in local mar-

kets do not service the general population directly, and financial managers. According

to the Standard Occupational Classification scheme financial managers “Plan, direct, or

coordinate accounting, investing, banking, insurance, securities, and other financial ac-

tivities of a branch, office, or department of an establishment.” Hence, such fall into two

categories: those who manage financial matters for corporations and who are unlikely

to be affected by higher local income inequality, and those that manage the financial

means of private individuals who are likely to operate in more integrated markets. In

either case we expect to see no local spillover effect. Figure 2 shows the increase in the

99th / 90th percentile for selected occupations and demonstrates that the increase in

within-occupation top income inequality is a trend outside of the very top of the income

distribution as well.

We will use estimate (20) using the Publicly available Decennial Census and American

Community Survey to estimate both 1/αo,t,s and 1/α−o,t,s. This allows us to examine

the time period 1980 to 2014 and consider a relatively broad set of occupations. Due to

possible concerns about endogeneity we will use an instrumental variable approach, using

a“shift-share”instrument (following Bartik, 1991) based on the occupational distribution

across geographical areas in 1980. We first show some summary statistics in Section 3.3.

We then perform our regression analysis on the income data in Section 4. A number of

plots are contained in the Data Appendix D

3.2 Income data

Our central data set is a combination of the Decennial Census for 1980, 1990 and 2000

and add the IPUMS Combined American Community Survey (ACS) for 2010-2014 as

one year, which we will henceforth refer to as 2014 (Ruggles et al. 2015).11 This leaves us

with between 5.4 million observations in 1980 and 7.4 million observations in 2014 with

positive wage income. We use 2010-2014 as opposed to the perhaps more natural 2008-

2012 to avoid the immediate aftermath of the Great Recession which had large impact

on top income. IPUMS does have data from farther back but it is a substantially smaller

sample and we exclude it from the analysis. Throughout we use the 1990 census occupa-

11The Decennial Censuses are each 5 per cent of the population, whereas the ACS each are 1 per
cent. Combining the years 2010-2014 creates an ‘artificial’ sample of 5 per cent for 2014. The IPUMS
inflates all numbers to 2014 using the consumer price index.
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tional classification from IPUMS which consistently assigns occupations throughout the

1980-2014 period. The publicly available income data are censored, generally at a level

at around top 0.5 per cent of the whole income distribution, which complicates our es-

timation of the parameter of the Pareto distribution.12 In particular, suppose X̃ follows

a Pareto distribution P (X̃ > x̃) = (x̃/xmin)−α, but the observed wage is x = max{x̃, x̄}
for some censoring point, x̄. Then we can write the maximum likelihood function as:

Πi∈Nuncαx
−(α+1)xαi (x̄/xmin)−αNcen , where Nunc is the set of uncensored observations and

Ncen is the number of censored observations. Armour, Burkhauser and Larrimore (2014)

use the same methodology on the Current Population Survey (March edition) to show

that trends in income inequality match those found by Kopczuk, Saez and Song (2010)

using uncensored social security data. The resulting maximum likelihood estimate is

1

α̂
=

∑
i∈Nunc log(xi/xmin) +Ncenlog(x̄/xmin)

Nunc

, (21)

where Nunc is number of uncensored observations. Note, that even without the assump-

tion of a Pareto distribution, equation (21) is a measure of income inequality: It is the

average log-difference from the minimum possible observation for the uncensored obser-

vations plus the product of the relative number of censored observations times the log

distance of the censoring point to the minimum. This will be our measure of income

inequality throughout.

In estimating equation (20), we will (for some specifications) control for average

income and population.

3.3 Summary statistics

We will be focusing on the combined pre-tax wage and salary income throughout.13

Table 1 below shows the mean, median, 90th, 95th and 98th percentile for for positive

wage income for each year all in 2014 dollars (we choose 98th as the censoring doesn’t

allow for the calculations of 99th for all years). As discussed in the introduction, income

inequality measured as the ratio of the 98th to 95th percentile or the ratio of the 95th

12Specially, the censoring takes place at 75,000 for 1980, 140,000 for 1990, 175,000 for 2000 and at the
99.5 pct ratio at the state level for each individual year 2010-2014. What information is given about
the censored variables varies from year to year.

13The census includes other measures of income, in particular business income which would be relevant
for some occupations. Unfortunately, since wage income and business income are censored separately
estimating a joint distribution for the two would be substantially more complicated. We are in process
of getting access to the full uncensored data which would allow us to use total income.
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to the median has increased during the period. The table also shows the estimate of

1/α on the top 10 per cent of observations with positive wage income for each year and

the 98/95th and 95/90th ratios from the estimated Pareto Distribution in parentheses.

There is a high level of agreement between the predicted and the actual ratios consistent

with a good fit of the Pareto distribution.

Although the censoring point is sufficiently high to allow standard measures of top

income inequality to be calculated for most occupations, the high average income of

some occupations leads to a larger share being censored. Whereas the censoring has

little impact on the overall distribution, slightly more than 26 per cent of Physicians with

positive income are censored in 2000. This implies that we cannot calculate measures

of income inequality using high percentiles. But we can still calculate 1/α using the

assumption of a Pareto distribution. Table 2 shows the result using the top 65 per

cent of the uncensored observations.14 Consistent with Figures 1, 1/α has increased

for most occupations in the top during this period. Table D.1 in the Appendix shows

the calculated measures of income inequality (using top 10 per cent of the population)

for a number of other occupations along with the fraction of observations with positive

income that are censored. The table shows the same general trend, but with some notable

exceptions. In particular there has been little upward trend in top income inequality for

truck drivers, sales people, and computer software developers, but substantial increases

for financial managers and chief executives.15 Table D.2 shows which occupations were

in the top 1, 5 and 10% for 1980 and 2014. What is particularly noteworthy is that

Physicians are increasingly important in the high end of the income distribution and

that this importance has grown from 1980 to 2014. In fact, Physicians are the most

common (Census) occupation in the top 1% in 2014.

Each observation in the data is associated with a particular geographical area (for

1980 ‘County groups’ from 1990 onward ‘Public Use Microdata Area’). As argued in

Dorn (2009) these are statistical areas created to ensure confidentiality and have little

economic meaning. Alternatively, one could use states, but some local economies, say

greater New York City or Washington D.C. span several states, some states are too

14Throughout the paper we follow the following rule of thumb when calculating occupation, year, labor
market specific measures of income inequality: If there are very few censored observations —say for
secretaries— we use the top 10 per cent of the distribution. For occupations that are heavily censored
— physicians and dentists — we move the cut-off until we have around twice as many uncensored
observations as censored for all labor market areas we use. For Physicians that is the top 65 per cent,
for dentists it is top 50 per cent and for Real Estate agents it is top 20 per cent.

15Table D.2 in the appendix shows the 10 most prominent occupations in the top 1, 5 and 10% of the
population for 1980 and 2014.
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large to meaningfully capture a local economy and some states are too small to have

sufficient number of observations. Dorn instead uses commuting zones of which there

are 741. We take a similar approach but use labor market areas. Both commuting zones

and labor market areas are defined based on the commuting patterns between counties

(Tolbert and Sizer, 1996). But whereas commuting zones are unrestricted in size, labor

market areas aggregate commuting zones to ensure a population of at least 100,000.

Given that our estimation strategy relies on a relatively high number of observations of

a particular occupation, labor market areas are a more natural choice. Table 3 shows

the size distribution of number of total observations with positive wage income and

physicians with positive wage income across labor market areas.

To asses the fit of the Pareto distribution at the labor market area, year, occupation

level, we use the fact that a Pareto distribution implies a linear relationship between

value and frequency. Figure 3 shows this relationship for the biggest labor market area

for both all occupations (Los Angeles) and physicians specifically (New York City). The

line shows the predicted number of observations in each bin whereas the orange dots

give the actual number of observations in each bin, both on the left hand side. The right

hand axis gives the corresponding values for the censored values, scaled to ensure that

the predicted censored values are on the same line as the uncensored predicted values.16

Figure 3.a below uses the biggest labor market area (Los Angeles) for the year 2000

and bins the income interval between that of the 90th percentile and the censoring point

of 175,000 into 20 evenly sized bins and plots the (linear) predicted number of observa-

tions from the associated Pareto distribution with the observed number of observations

in each bin (the choice of bins in the figure does not influence any estimation results).

The figure further shows the actual and predicted number of censored observations on

the right hand side scaled to fit a linear line. The fit for the general population is very

close to a straight line and therefore a Pareto distribution. We perform an analogous

analysis for the physicians (where New York City is the biggest labor market), although

with the lower number of observations overall and the much higher number of censored

observations we use the top 65 per cent of the positive uncensored observations.17 The

16Formally, we use the fact that for a dataset with N observations on wages drawn from a Pareto
distribution P (X > x) = (x/xmin)−α with a corresponding pdf of f(x) = αx−(α+1)xαmin, the expected

number of observations that have wage income in the interval [x′−∆
2 , x

′+ ∆
2 ] is Nx′ = N

∫ x′+ ∆
2

x′−∆
2

f(x)dx '
N∆αx−(α+1)xαmin, giving a negative linear relationship between logNx′ and logx. The predicted number
of censored observations is P (X > x̄) = (x̄/xmin)−α to which we (arbitrarily) assign the value x̄+ ∆/2
and scale to fit on the same predicted line.

17Though we carry out the main analysis using the top 65% of observations, Table B.5 in the Appendix
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fewer observations implies a fit that is less tight, but there are no systematic deviations

from the straight line. Figures D.1 and D.2 in the Appendix give equivalent figures for

the 20 biggest labor markets in the United States.

3.4 Instrument

One might worry about endogeneity when estimating equation (20). In particular, even

controlling for labor market area and year fixed effects, a positive correlation between

general income inequality and income inequality for a specific occupation might reflect

deregulation, changes in the tax system or common local economic trends and not reflect

a causal effect from general income inequality to inequality for the occupation of interest.

To address this issue, we use a Bartik (1991)-style instrument. Namely we define:

logI−o,t,s = log

 ∑
κ∈K−o

ωκ,1980,s(1/ακ,t)

 , for t = 1980, 1990, 2000, 2014.

K−o is the set of the 20 most important occupations in the top 5 per cent of the in-

come distribution nationwide in 1980 (excluding occupation o). ωκ,1980,s is the share of

individuals in occupation κ among individuals in an occupation belonging to K−o in

1980 in LMA s. In other words our instrument is a weighted average of nationwide

occupational inequalities for the most important occupations in the top of the income

distribution, where the weights correspond to the initial occupational composition of each

LMA. The instrument has strong predictive power: the correlation between logI−o,t,s and

log(1/α−o,t,s) for Physicians is between 0.39 and 0.55 for each year (depending on the

number of LMAs considered). It is practically the same for all occupations as each occu-

pation represents a relatively small share of total top income holders.18 In other words,

in the IV regression we only exploit the changes in labor market income inequality that

arises from the occupational distribution in 1980 combined with the nationwide trends

in occupational inequality. Furthermore, by using nationwide trends, our instrument is

more likely to capture the effects of globalization, technological change or deregulation,

which affect local inequality but are exogenous to the LMA, which is in line with a

decrease in αx in our theoretical model.

shows that the parameter estimate is relatively insensitive to the choice of cut-off.
18The qualitative conclusions of our analysis remain unchanged by using a different number of top

occupations than 20, although the point estimate of β is somewhat sensitive.
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4 Empirical Analysis

4.1 Testing the model for occupations with positive predicted

spill-overs

Having estimated the Pareto distributions described above we next estimate equation

(20). We start out by conducting the analysis for physicians. Table 4 presents summary

statistics for the regressors of interest. We restrict ourselves to the biggest 253 labor

market areas — those with at least 8 observations of physicians in 1980 — for a total of

1,012 observations. Table B.6 moves this cut-off between the top 100 LMAs and using

all. The parameter estimate, β, remains significant and between 0.8 and 1.7.

The result is shown in Table 5.19 The first column shows an OLS regression of

physicians’ income inequality on general income inequality including year and LMA

fixed effects and shows an elasticity of around 1/3. To take account of the fact that the

variables of the estimation are themselves estimated, confidence intervals are calculated

using bootstrap sampling, stratified at the occupational-labor market area-year level

using 300 replications.20 This estimate remains unchanged in column (2), where we

include controls for labor market population and the average wage income among those

with positive wage income. Neither control has a significant impact on physicians’ income

inequality. Column (3) shows the first stage of the instrumental variable regression using

the instrument as constructed in (21). The instrument has a strong predictive power

and along with the time trends accounts for 82 percent of the variation in the variation

for general income inequality (R2 is computed excluding the LMA fixed effects). The

F -statistic for the first stage is 40 for our preferred specification and higher than 20

for all regressions in this paper. The fourth and fifth columns give the second stage IV

results, which show point estimates of the coefficient of interest of 1.19 or 1.33 depending

on controls. This is strongly significantly different from 0, and not significantly different

from the predicted value of 1 from the simplest model of Section 2.1. With our measure

of general top income inequality increasing by 27 percent and top income inequality for

physicians increasing by 31 percent (Tables 1 and 2) an elasticity of 1 suggests that a

19One can show that the inverse of the variance of the MLE estimator of equation 21 is proportional
to the number of uncensored observations and we correspondingly weigh the equation by the number
of uncensored observations of physicians.

20That is for each draw we resample person-observations, recalculate the α’s and reestimate the
regressions. For computational reasons we do restrict attention to the top end of the redistribution,
i.e. we only resample from top 10 per cent of the income distribution in a given labor market area to
calculate general income inequality.
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large share of the rise of income inequality among doctors can be explained by the general

increase in income inequality, although the exact fraction is measured with uncertainty.

Moreover, note that neither the controls nor the year fixed effects are significant in the

IV regressions, which is consistent with our mechanism explaining most of the changes

in income inequality for doctors.

The medical industry in the United States is not perfectly described by the simple free

market model of Section 2.1: the government plays a substantial role through Medicare

and Medicaid, the insurance sector has an important role as an intermediary, there

is substantial asymmetric information between patients and doctors and patients are

often willing to travel to seek medical attention. However, these features are unlikely

to substantially affect our analysis. The government sets administrative prices for those

whose care it pays for directly, but providers’ negotiations with private insurers generally

lead to higher prices (Clemens and Gottlieb, forthcoming) . Even in the presence of

asymmetric information, patients often have clear beliefs about who the “best” local

doctor in a special field is (even though these beliefs may be incorrect). And although

patients occasionally travel for care, a patient in Dallas is vastly more likely to seek

medical care in Dallas than Boston. Furthermore, our empirical strategy more heavily

weights large metropolitan areas, which are more likely to have a full portfolio of medical

specialties implying less need to travel. Finally, the extent to which the medical industry

is described by a national market would bias our parameter estimate downwards, but

we still find a significantly positive effect.

Nevertheless, we analyze two other occupations that are much less regulated and

more local: dentistry and real estate. We perform an analogous examination of dentists

in table 6 and reach broadly similar conclusions. Again we focus on labor market areas

with at least 8 observations in 1980, which severely reduces the number of labor market

areas from 253 to 40. Yet, we see a pattern broadly similar to that of physicians, albeit

with less precision (the OLS coefficients have p-values of 12 per cent). Both OLS and

IV point estimates are around twice as high for dentists as for physicians. Though this

might reflect the fact that dentistry is more local and prices are less regulated, the point

estimates are not significantly distinct and we cannot rule out a difference purely due

to sampling error. With a spill-over elasticity of 2.8 and a rise in income inequality for

dentists that has mirrored that of the general population we substantially “over-explain”

the rise in income inequality for dentists, though with this few observations there is
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substantial imprecision in the estimate.21

Finally, we use an occupation outside the medical industry: real estate agents. The

fee structure in real estate is often proportional to housing prices (Miceli, T., Pancak,

K. and Sirmans, C., 2007) and the increase in the spread of housing prices is consistent

with the increase in income inequality (Määttänen and Terviö, 2014). Real estate is

a difficult business to scale up, as each house still needs to be shown individually and

each transaction negotiated separately. Consequently, one would expect to see spill-over

effects from general income inequality to real estate agents. Table 7 shows that this is

indeed the case. Though the OLS estimates are somewhat lower than for the physicians,

the IV estimates are very close. Income inequality for Real Estate agents has increased

from 0.45 to 0.69, an increase of 50%. With general income inequality increasing by

around 27% the IV estimate suggests that more than half the increase in agents’ income

inequality can be attributed to the general increase in income inequality.

4.2 Testing the model for occupations with zero predicted spill-

overs

Whereas our theory predicts local spill-over effects from general income inequality to the

income inequality for occupations such as physicians, dentists and real agents it predicts

no such spill-overs for other occupations. We perform analogous regressions for financial

managers, who, as argued above, do not fit the conditions required for local spill-overs.

Table 8 shows that this is the case. Though the OLS estimate is positive, the IV estimate

is close to zero (and in fact the point estimate is now negative). This also shows that

spurious correlation between general inequality and occupational inequality at the local

level is likely but that our instrument can address this concern.

Finally, we perform the analysis for two other occupations with substantial increases

in top income inequality from Figure 2 but where our model predicts to spill-overs:

College Professors and Secretaries.22 Universities with faculty in the top 10% operate in

a very national market and secretaries are not hired by private citizens. In either case

21We also perform the analogous analysis on nurses for whom top inequality has grown as well (See
Figure 2) though it is less clear that our model would apply to this occupation. Whereas the OLS
estimates are similar to physicians, the IV estimate is lower and estimated with more imprecision and
we cannot clearly establish spill-overs as a cause for the increase in income inequality for nurses. See
Table B.1 in Appendix B.1 for details.

22There is a data break in the IPUMS data: For 1980 to 1990 Post-Secondary teachers (those teaching
at higher level than high-school) are partly categorized by subject of instruction (code 113-154). From
2000 onward they are not. We collapse all codes 113-154 into 154 for 1980 to 1990.
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we see no effect. See Tables B.2 and B.3.

Interestingly income inequality for secretaries correlates strongly with income in-

equality for“Chief Executives and Public Administrators” in an OLS regression. Though

we cannot establish causality this is consistent with a theory analogous to the one pre-

sented in 2.1 where CEOs compete for the most skilled secretaries. At slightly more than

10% the implied elasticity is substantially lower than for other occupations considered

here. See Table B.4 in the Appendix.

It is important to distinguish the predictions of our theory of consumption-driven

spill-overs with alternative theories of spill-overs through increased demand for skill in the

local labor market. Even if these were driven by the original distribution of occupations,

and therefore captured by our instrument, one would expect income inequality to spill

over broadly into other occupations. In contrast, our theory predicts that this will only

happen for a subset of occupations, in particular those that provide non-divisible local

services, in line with the empirical evidence.

5 Conclusion

In this paper, we established that an increase in income inequality in one occupation can

spill over through consumption to other occupations, such as physicians, dentists and

real estate agents, that provide non-divisible services directly to customers. We show

that changes in general income inequality at the level of the local labor market area

do indeed spill-over into these occupations. We distinguish this with other occupations

that have seen rises in top income inequality, but that either do not fit the conditions or

operate in a national labor market such as financial managers and college professors and

show that there are no spill-over effects. This contrasts our consumption-driven theory

with different theories of changes in the relative demand for skills which would predict

broader spill-overs of income inequality.

The magnitude of the estimate suggests that this effect may explain most of the

increase in income inequality for occupations such as doctors, dentists and real estate

agents. As a result, the increase in top income inequality across most occupations

observed in the last 40 years may not require a common explanation: in particular,

increases in inequality for, say, financial managers or CEOs because of deregulation or

globalization may have spilled over to other occupations in the top causing a broader

increase in top income inequality.
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Further, even though our analysis has been purely positive, it clearly has normative

implications, that we plan on exploring in future work. In particular, our analysis could

be relevant to the study of top income taxation (see for instance, Scheuer and Werning,

2015).

31



References

Acemoglu, D. and Autor, D. (2011). Handbook of Labor Economics, 40:1043–1171.

Aghion, P., Akcigit, U., Bergeaud, A., Blundell, R., and Hémous, D. (2015). Innova-

tion and top income inequality. Nber working paper no. 21247, National Bureau of

Economic Research. NBER wp 21247.

Alder, M. (1985). Stardom and talent. The American Economic Review, 75(1):208–212.

Armour, P., Burkhauser, R., and Larrimore, J. (2016). Economic Inquiry, 54:1263–1273.

Bakija, J., Cole, A., and Heim, B. (2010). Jobs and income growth of top earners and

the causes of changing income inequality: Evidence from u.s. tax return data.

Bartik, T. J. (1991). Boon or boondoggle? the debate over state and local economic

development policies. Upjohn Institute for Employment Research, pages 1–16.

Deaton, A. (1998). Getting prices right: What should be done? 12(1):37–46.

Dorn, D. (2009). Essays on inequality, spatial interaction, and the demand for skills,

ph.d. dissertation, university of st. gallen.

Gabaix, X. and Landier, A. (2008). Why has ceo pay increased so much? The Quarterly

Journal of Economics, 123 (1):49–100.

Gabaix, X., Lasry, J.-M., Lions, P.-L., and Moll, B. (2015). The dynamics of inequality.

NBER wp 21363.

Garicano, L. and Hubbard, T. (2012). Learning about the nature of production from

equilibrium assignment patterns. Journal of Economic Behavior {& Organization,

84:136–153.

Geerolf, F. (2014). A static and microfounded theory of zipf’s law for firms and of the

top labor income distribution.

Gesbach, H. and Schmutzler, A. (2014). Does globalization create superstars? a simple

theory of managerial wages. European Economic Review, 71:34–51.

Goldin, C. and Katz, L. (2010). The Race between Education and Technology.

32



Grossman, V. (2007). Firm size, productivity and manager wages: a job assignment

approach. The B.E. Journal of Theoretical Economics, 7(1).

Guvenen, F., Karahan, F., Ozkan, S., and Song, J. (2015). What do data on millions of

u.s. workers reveal about life-cycle earnings risk. NBER working paper 20913.

Jones, C. and Kim, J. (2014). A schumpeterian model of top income inequality. NBER

working paper 20637.

Kaplan, S. and Rauh, J. (2013). It’s the market: the broad-based rise in the return to

top talent. Journal of Economic Perspectives, 27(3):35–56.

Kopczuk, W., Saez, E., and Song, J. (2010). Quarterly Journal of Economics, 125(1):91–

128.

Kukharskyy, B. (2012). Trade, superstars, and welfare. BGPE Discussion Paper No 120.

Ma, L. (2015). Globalization and top income shares.
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Figure 1: Relative income of top 0.1% to top 1% of income distribution for selected occupa-
tions
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Notes: Relative earnings of those in the top 0.1% compared with those in top 1% across occupations for
selected occupations “All” refers to all in the top 1% or top 0.1%, not just the occupations shown here.
Source: Bakija, Cole and Heim (2012)
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Figure 2: The ratio of the 99th to 90th percentile for selection occupations
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Notes: Using strictly positive wage income. Source: Decennial Census and American Community Sur-
vey. Authors own calculations. Top-censoring prevents the calculation of 99th percentile for the general
distribution as well as for college professors.
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Figure 3: Fit of the Pareto Distribution for the year 2000
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Table 1: Wage income 1980-2014 for general population

percentile p95/p90 p98/p95
Year Median p90 p95 p98 (predicted) (predicted) 1/α

1980 25.9 68.1 85.2 114.9 1.25 ( 1.26) 1.35 ( 1.35) 0.33
1990 29.0 76.1 96.8 137.6 1.27 ( 1.30) 1.42 ( 1.42) 0.38
2000 33.0 83.9 111.4 165.0 1.33 ( 1.32) 1.48 ( 1.44) 0.40
2014 30.5 90.0 120.0 177.9 1.33 ( 1.34) 1.48 ( 1.47) 0.42

Notes: Real wage income for observations with positive income (1000s of 2014
dollars using CPI). p95/p90 is the relative income of top 5 and top 10 per cent
(predicted values in parenthese). Censoring prevents the calculation of 99th
percentile wages

Table 2: Wage income 1980-2014 for Physicians

Year median 1/α p95/p90 (pred)

1980 100.6 1.29 1.71
1990 126.8 1.49 1.59
2000 137.5 1.58 1.55
2014 160.9 1.70 1.50

Notes: Real Wage Income (1000s of
2014 dollars using CPI) calculation
of α uses top 65 per cent of non-
censored positive income

Table 3: Number of observations across labor market areas

All Physicians
Year Mean 25th Median 75th Mean 25th Median 75th

1980 39584 17500 24560 37269 70 17 28 54
1990 43772 21207 29393 43286 89 22 37 70
2000 47541 21829 31786 46297 105 26 42 87
2014 51495 22789 34212 49489 138 29 56 115

Notes: Number of observations for labor market areas (all and physicians)
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Table 4: Summary Table For Regression Variables

Variable Obs. Mean Std. dev. Min Median Max
Physicians

log(1/α(o)) 1,012 0.28 0.50 -2.17 0.33 2.34
log(1/α(−o)) 1,012 -1.11 0.14 -1.60 -1.10 -0.70
log(I) 1,012 -1.00 0.06 -1.25 -1.00 -0.84

Dentists
log(1/α(o)) 160 -0.22 0.33 -1.11 -0.22 0.91
log(1/α(−o)) 160 -0.98 0.14 -1.34 -0.96 -0.67
log(I) 160 -0.96 0.06 -1.14 -0.95 -0.81

College Professors
log(1/α(o)) 703 -1.67 0.55 -7.10 -1.60 -0.60
log(1/α(−o)) 704 -1.05 0.14 -1.49 -1.04 -0.66
log(I) 704 -0.96 0.07 -1.24 -0.96 -0.72

Financial managers
log(1/α(o)) 1,421 -1.76 1.81 -16.46 -1.41 0.72
log(1/α(−o)) 1,432 -1.08 0.15 -1.64 -1.07 -0.58
log(I) 1,432 -0.98 0.07 -1.26 -0.98 -0.79

Real estate sales occupations
log(1/α(o)) 1,448 -0.41 0.32 -3.32 -0.38 0.72
log(1/α(−o)) 1,448 -1.08 0.15 -1.58 -1.08 -0.60
log(I) 1,448 -1.00 0.07 -1.25 -1.00 -0.79

Secretaries
log(1/α(o)) 1,576 -1.55 0.27 -2.60 -1.55 -0.49
log(1/α(−o)) 1,576 -1.08 0.15 -1.63 -1.07 -0.58
log(I) 1,576 -0.98 0.08 -1.26 -0.98 -0.77

Notes: For labor market areas with at least 8 uncensored observa-
tions for MLE estimation.
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Table 5: Regression Table for Physicians

(1) (2) (3) (4) (5)
OLS OLS 1st Stage 2SLS 2SLS

log(1/α(o)) log(1/α(o)) log(1/α(−o)) log(1/α(o)) log(1/α(o))

log(1/α(−o)) 0.34*** 0.32** 1.19** 1.33**
[ 0.06, 0.50] [ 0.05, 0.49] [ 0.35, 2.20] [ 0.38, 2.46]

Instrument 1.06***
[ 0.91, 1.23]

Log of Population -0.02 -0.09*** 0.10
[-0.13, 0.08] [-0.11,-0.08] [-0.06, 0.23]

Log of Income 0.12 0.06*** 0.06
[-0.04, 0.24] [ 0.04, 0.09] [-0.13, 0.17]

1990 0.09*** 0.02 -0.03*** -0.01 -0.07
[ 0.07, 0.14] [-0.06, 0.15] [-0.06,-0.01] [-0.12, 0.11] [-0.20, 0.09]

2000 0.10*** -0.01 0.10*** -0.09 -0.20
[ 0.07, 0.17] [-0.13, 0.19] [ 0.07, 0.12] [-0.32, 0.11] [-0.44, 0.08]

2014 0.21*** 0.06 0.06** -0.00 -0.15
[ 0.17, 0.28] [-0.09, 0.31] [ 0.01, 0.09] [-0.24, 0.20] [-0.41, 0.20]

LMA FE Yes Yes Yes Yes Yes
R2 (ex. LMA FE) 0.21 0.21 0.82 . .
Observations 1,012 1,012 1,012 1,012 1,012

Bootstrapped standard errors based on 300 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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Table 6: Regression Table for Dentists

(1) (2) (3) (4) (5)
OLS OLS 1st Stage 2SLS 2SLS

log(1/α(o)) log(1/α(o)) log(1/α(−o)) log(1/α(o)) log(1/α(o))

log(1/α(−o)) 0.60 0.54 2.17* 2.77*
[-0.12, 1.21] [-0.16, 1.20] [-0.11, 3.79] [-0.19, 5.20]

Instrument 1.66***
[ 1.20, 2.04]

Log of Population -0.04 -0.12*** 0.30
[-0.35, 0.35] [-0.14,-0.08] [-0.21, 0.83]

Log of Income 0.42 0.03 0.38
[-0.15, 0.85] [-0.01, 0.08] [-0.20, 0.87]

1990 -0.20** -0.47** -0.10** -0.42** 1.56**
[-0.30,-0.04] [-0.80,-0.05] [-0.17,-0.02] [-0.66,-0.07] [ 0.36, 2.58]

2000 -0.17 -0.60 0.11*** -0.56* 0.77**
[-0.34, 0.04] [-1.11, 0.07] [ 0.03, 0.17] [-0.97, 0.03] [ 0.19, 1.30]

2014 -0.38*** -0.92** 0.04 -0.79** 0.38***
[-0.55,-0.15] [-1.57,-0.09] [-0.06, 0.13] [-1.24,-0.19] [ 0.15, 0.58]

LMA FE Yes Yes Yes Yes Yes
R2(ex. LMA FE) 0.19 0.20 0.87 . .
Observations 160 160 160 160 160

Bootstrapped standard errors based on 300 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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Table 7: IV Regressions for Real Estate Agents (top 20 per cent)

(1) (2) (3) (4) (5)
OLS OLS 1st Stage 2SLS 2SLS

log(1/α(o)) log(1/α(o)) log(1/α(−o)) log(1/α(o)) log(1/α(o))

log(1/α(−o)) 0.17* 0.17* 1.02** 1.32**
[-0.03, 0.30] [-0.03, 0.30] [ 0.20, 2.09] [ 0.29, 2.56]

Instrument 0.64***
[ 0.51, 0.76]

Log of Population 0.05* -0.04*** 0.11***
[-0.00, 0.10] [-0.05,-0.03] [ 0.04, 0.20]

Log of Income 0.23*** 0.03** 0.19**
[ 0.13, 0.33] [ 0.00, 0.05] [ 0.08, 0.31]

1990 0.01 -0.14*** 0.03*** -0.09 0.57***
[-0.01, 0.04] [-0.21,-0.08] [ 0.01, 0.05] [-0.21, 0.01] [ 0.34, 0.90]

2000 0.06*** -0.20*** 0.18*** -0.13 0.31***
[ 0.01, 0.10] [-0.30,-0.10] [ 0.15, 0.20] [-0.38, 0.04] [ 0.19, 0.50]

2014 0.01 -0.30*** 0.17*** -0.20** 0.14***
[-0.03, 0.06] [-0.43,-0.19] [ 0.14, 0.20] [-0.48,-0.01] [ 0.10, 0.19]

LMA FE Yes Yes Yes Yes Yes
R2(ex. LMA FE) 0.05 0.05 0.82 . .
Observations 1,448 1,448 1,448 1,448 1,448

Bootstrapped standard errors based on 300 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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Table 8: Regression Table for Financial Managers (top 10 per cent)

(1) (2) (3) (4) (5)
OLS OLS 1st Stage 2SLS 2SLS

log(1/α(o)) log(1/α(o)) log(1/α(−o)) log(1/α(o)) log(1/α(o))

log(1/α(−o)) 0.27*** 0.27*** -0.25 -0.29
[ 0.10, 0.37] [ 0.08, 0.36] [-1.13, 0.57] [-1.23, 0.58]

Instrument 0.78***
[ 0.64, 0.90]

Log of Population 0.00 -0.06*** -0.04
[-0.07, 0.06] [-0.08,-0.05] [-0.11, 0.06]

Log of Income 0.04 0.03*** 0.05
[-0.06, 0.13] [ 0.01, 0.05] [-0.05, 0.13]

1990 0.05*** 0.03 0.01 0.12** 0.09
[ 0.03, 0.08] [-0.03, 0.10] [-0.02, 0.03] [ 0.02, 0.21] [-0.03, 0.20]

2000 0.14*** 0.11** 0.15*** 0.26** 0.22**
[ 0.12, 0.19] [ 0.01, 0.22] [ 0.13, 0.18] [ 0.08, 0.44] [ 0.00, 0.40]

2014 0.18*** 0.13** 0.13*** 0.31*** 0.26**
[ 0.15, 0.22] [ 0.01, 0.28] [ 0.10, 0.16] [ 0.11, 0.51] [ 0.01, 0.46]

LMA FE Yes Yes Yes Yes Yes
R2(ex. LMA FE) 0.31 0.31 0.80 . .
Observations 1,432 1,432 1,432 1,432 1,432

Bootstrapped standard errors based on 300 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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A Appendix: Theory

A.1 Positive assortative matching in equilibrium

Here we show that the equilibrium must feature positive assortative matching between

the income of the patient and the skill of the doctor. To do so, we assume that there

are 2 individuals 1 and 2 with income x1 < x2 whose consumption bundles are so that

z1 > z2 and c1 < c2. For simplicity we write the utility function as a function of health

services and the income left for other goods (x− ω (z)).

Note that since consumer 1 chooses a doctor of quality z1, it must be the case that:

u (z1, x1 − ω (z1)) ≥ u (z2, x1 − ω (z2)) .

Further, we have:

u (z1, x2 − ω (z1))− u (z2, x2 − ω (z2))

= u (z1, x2 − ω (z1))− u (z1, x1 − ω (z1)) + u (z1, x1 − ω (z1))− u (z2, x1 − ω (z2)) + u (z2, x1 − ω (z2))− u (z2, x2 − ω (z2))

=

∫ x2−ω(z1)

x1−ω(z1)

(
∂u

∂c
(z1, c)−

∂u

∂c
(z2, c)

)
+ u (z1, x1 − ω (z1))− u (z2, x1 − ω (z2)) .

If the utility function has a positive cross-partial (which is the case for a Cobb-Douglas),

then the first term is positive as z1 > z2. Since the second term is also weakly positive,

then it must be the case that u (z1, x2 − ω (z1)) > u (z2, x2 − ω (z2)), in other words,

consumer 2 would rather pick a doctor of ability z1. Therefore there is a contradiction

and it must be the case that z1 < z2.

A.2 Solving (6)

We look for a specific solution to(6) of the type w (z) = K1z
αz
αx . We find that such a K1

must satisfy

K1 = xmin
βzαxλ

αz (1− βz) + βzαx

(
1

zc

)αz
αx

.
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As the solutions to the differential equation w′ (z) z+ βz
1−βzw (z) = 0 are given by Kz−

βz
1−βz

for any constant K. We get that all solutions to (6) take the form:

w (z) =
xminβzαxλ

αz (1− βz) + βzαx

(
z

zc

)αz
αx

+Kz−
βz

1−βz .

We then obtain (7) by using that w (zc) = xmin which fixes

K = xminz
βz

1−βz
c

αz (1− βz) + βzαx (1− λ)

αz (1− βz) + βzαx
.

A.3 Proof of remark 1

Using (1), (2), (5) and (10), we get that the utility of a generalist with income x is given

by

u (x) = (x− h (x))1−βz
(
m−1 (x)

)βz
=

(
αz (1− βz)

αz (1− βz) + βzαx
x− 1

λ

αz (1− βz) + βzαx (1− λ)

αz (1− βz) + βzαx
xmin

(
x

xmin

)−αx
αz

βz
1−βz

)1−βz (
zc

(
x

xmin

)αx
αz

)βz

.

Therefore eq (x) obeys

eq (x) =

(
αz (1− βz)

αz (1− βz) + βzαx
x− 1

λ

αz (1− βz) + βzαx (1− λ)

αz (1− βz) + βzαx
xmin

(
x

xmin

)−αx
αz

βz
1−βz

)(
x

xmin

)αx
αz

βz
1−βz

,

which implies that for x large enough

eq (x) ≈ αz (1− βz)x
−αx
αz

βz
1−βz

min

αz (1− βz) + βzαx
x1+

αx
αz

βz
1−βz .

Then the distribution of real income obeys Pr (EQ > e) = Pr (X > eq−1 (e)), so that for

e large enough, we obtain:

Pr (EQ > e) ≈
(

xminαz (1− βz)
αz (1− βz) + βzαx

1

e

) αx

1+αxαz
βz

1−βz .

Therefore asymptotically, real income is distributed in a Pareto way with a shape pa-

rameter αeq ≡ αx
1+αx

αz

βz
1−βz

. Moreover we obtain: d lnαeq
d lnαx

= 1

1+αx
αz

βz
1−βz

.
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A.4 Brewers’ case

Taking first order conditions with respect to c and y, we obtain that expenditures on

beers and on the homogeneous good are related by

py =
βy

1− βy − βz
c. (22)

The first order condition with respect to the quality of the health services consumed and

the homogeneous good similarly imply

ω′ (z) z =
βz

1− βy − βz
c. (23)

Together with the budget constraint equation

ω (z) + py + c = x,

(22) and (23) give (3) so that all results concerning w (z) including (10) still apply, and

y (x) =
1

p

βy
1− βz

(x− h (x)) . (24)

Market clearing imposes∫ ∞
xmin

y (x) dGx (x) = µm

∫ ∞
yc

ydGy (y) , (25)

where y (x) denotes the consumption of beer by a generalist of income x and Ga the cdf

of variable a. Plugging (24) in (25) we obtain:

pyc =
ψ

µm

(
yc
ymin

)αy
,

with ψ ≡ αy − 1

αy

αzβy

(
1
αx

+ λ− 1
)

λ (βz + αz (1− βz))
x̂.

This implies that there are two possible scenarios. If ψ ≥ µmxmin then pymin ≥ xmin

so that all possible brewers end up working as brewers. We then have

p =
ψ

µmymin

.
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Since ψ is decreasing in αx, a decrease in the shape parameter of generalist income is

associated with a proportional increase in brewer’s income.

Note that
ψ

xmin

=
αzβy (αy − 1)

λ (βz + αz (1− βz))αy
1 + (λ− 1)αx

αx − 1

is decreasing in αx. Therefore as αx decreases then this situation becomes more and

more likely.

Otherwise, yc > ymin with

yc = ymin

(
µm

xmin

ψ

) 1
αy

,

so that as αx decreases (and consequently xmin to keep mean income of generalists

constant), yc decreases and more and more potential brewers decide to become brewers.

This leads to

p =

(
ψ

µm

) 1
αy
(
αx − 1

αx
x̂

)αy−1

αy 1

ymin

=

(
1

µm

αzβy (αy − 1)

λ (βz + αz (1− βz))αy

) 1
αy
(

1 + (λ− 1)αx
αx − 1

) 1
αy αx − 1

αx

x̂

ymin

.

Note that

d

dαx
(1 + (λ− 1)αx)

1
αy

(αx − 1)
αy−1

αy

αx

= [(1 + (λ− 1)αx) (αy − 1)− (αx − 1)]
(1 + (λ− 1)αx)

1
αy
−1

(αx − 1)
−1
αy

αyα2
x

,

the sign of which is ambiguous since λ can be close to 1 and we may have αx > αy.

Therefore in this case, a decrease in αx increases the supply of beers but as a result the

impact on brewers’ income is ambiguous.

For any price level p̃, we can define the real welfare measure similarly as the income

which gives the same utility in the market and when the agent is forced to consume (for

free) zc while having y prices at p̃. That is we now have:

u

(
zc,

1− βz − βy
1− βz

eq (x) ,
βy

1− βz
eq (x)

p̃

)
= u (z (x) , c (x) , y (x)) .

47



We then obtain:

eq (x) =

(
p̃

p

) βy
1−βz

(
αz (1− βz)

αz (1− βz) + βzαx
x− 1

λ

αz (1− βz) + βzαx (1− λ)

αz (1− βz) + βzαx
xmin

(
x

xmin

)−αx
αz

βz
1−βz

)(
x

xmin

)αx
αz

βz
1−βz

.

Therefore the analysis of real income inequality is the same whether βy = 0 or not.

A.5 Deriving (15)

Using that both doctors talents and income are approximately Pareto distributed, we

can rewrite (3) as:

(m (z) / (m (z)))αx =
Gz,zc (z)

Gx (m (z))

(
(z/z)αz + o

((
z

z

)αz))
− o

((
m
(
z
)

m (z)

)αx)
.

From this we get that m (z) is of the order of z
αz
αx and therefore

m (z) = Bz
αz
αx + o

(
z
αz
αx

)
with B defined as in the text. We can then rewrite (3) as

w′ (z) z =
βz

1− βz

(
λBz

αz
αx − w (z)

)
+ o

(
z
αz
αx

)
. (26)

We then define w (z) ≡ βzαx
αz(1−βz)+βzαxλBz

αz
αx which is a solution to the differential equa-

tion without the negligible term, and w̃ (z) ≡ w (z)− w (z), which must satisfy

w̃′ (z) z = − βz
1− βz

w̃ (z) + o
(
z
αz
αx

)
.

This gives

w̃′ (z) z
βz

1−βz +
βz

1− βz
w̃ (z) z

βz
1−βz

−1 = o
(
z
αz
αx z

βz
1−βz

−1
)

Integrating we obtain:

w̃ (z) = Kz−
βz

1−βz + o
(
z
αz
αx

)
for some constant K, therefore w̃ (z) is negligible in front of w (z).
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A.6 Appendix: proof of Proposition 3

We rewrite (19) more precisely as:

w′ (z) = λ
ε−1
ε
βz
βc
z−

1
ε

(
λBz

αz
αx − w (z)

) 1
ε

+ o

(
λBz

αz
αx − w (z)

z

) 1
ε

. (27)

Since consumption of the homogeneous good must remain positive then limλBz
αz
αx −

w (z) ≥ 0, which means that w (z) cannot grow faster than z
αz
αx . We can then distinguish

2 cases: w (z) = o
(
z
αz
αx

)
and w (z) ∝ z

αz
αx .

Case with w (z) = o
(
z
αz
αx

)
. Then for z high enough, one obtains that

w′ (z) = λ
βz
βc
B

1
ε z(αzαx−1)

1
ε + o

(
z(αzαx−1)

1
ε

)
. (28)

Integrating, we obtain that for
(
αz
αx
− 1
)

1
ε
6= −1

w (z) = K + λ
βz
βc

B
1
ε(

αz
αx
− 1
)

1
ε

+ 1
z(αzαx−1)

1
ε
+1 + o

(
z(αzαx−1)

1
ε
+1
)
,

where K is a constant. Note that to be consistent, we must have
(
αz
αx
− 1
)

1
ε

+ 1 < αz
αx

,

that is (αz − αx) (ε− 1) > 0: this case is ruled out if αz ≥ αx and ε < 1 or if αz ≤ αx

and ε > 1.

If
(
αz
αx
− 1
)

1
ε

+ 1 < 0 then w (z) is bounded by K.

If
(
αz
αx
− 1
)

1
ε

+ 1 > 0, then we get that

w (z) = fw (z) ≡ λ
βz
βc

B
1
ε(

αz
αx
− 1
)

1
ε

+ 1
z(αzαx−1)

1
ε
+1 + o

(
z(αzαx−1)

1
ε
+1
)
,

where the notation fw is introduced to help notation. Therefore one gets, for w large:

Pr (W > w) = Pr
(
Z > (fw)−1 (w)

)
= Gw (w)

(
w

w

) αz

(αzαx−1) 1
ε+1

+ o

(
w
− αz

(αzαx−1) 1
ε+1

)
,

so that w is Pareto distributed asymptotically with a coefficient αw = αz

(αzαx−1)
1
ε
+1

, which

is increasing in αx (and we have αw > αx).
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If
(
αz
αx
− 1
)

1
ε

+ 1 = 0, then αz = αx (1− ε), and integrating (28), one obtains

w (z) == fw (z) ≡ λ
βz
βc
B

1
ε ln z + o (ln z) .

Therefore

Pr (W > w) = Pr

(
Z >

(
exp

(
βc

λβzB
1
ε

w

)
+ o (exp (w))

))
= Gz,zc (z) zαz exp

(
− αzβc

λβzB
1
ε

w

)
+ o (exp (−αzw))

In that case, w is distributed exponentially.

Case where w (z) ∝ z
αz
αx . That is we assume that

w (z) = Az
αz
αx + o

(
z
αz
αx

)
(29)

for some constant A > 0. Then, we have that

Pr (W > w) = Pr

(
Z >

((w
A

)αx
αz

+ o (w)
αx
αz

))
= Gw (w)

(
w

w

)αx
+ o (w)

αx
αz

That is w is Pareto distributed with coefficient αx.

Plugging (29) in (27), we get:

A
αz
αx
z
αz
αx
−1 +o

(
z
αz
αx
−1
)

= λ
ε−1
ε
βz
βc

(λB − A)
1
ε z(αzαx−1)

1
ε +o

(
(λB − A)

1
ε z(αzαx−1)

1
ε

)
. (30)

First, assume that αz = αx, then we get that the solution is characterized by A =

λ
ε−1
ε

βz
βc

(λB − A)
1
ε .

Consider now that αz 6= αx. If λB 6= A then (30) is impossible when ε 6= 1, therefore

we must have that λB = A. This equation then requires that

αz
αx
− 1 <

(
αz
αx
− 1

)
1

ε
⇔ (αz − αx) (ε− 1) < 0.
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In fact, for (αz − αx) (ε− 1) < 0, one gets that

w (z) = λBz
αz
αx − λ

(
B
αz
αx

βc
βz

)ε
zε(

αz
αx
−1)+1 + o

(
zε(

αz
αx
−1)+1

)
satisfies (27) provided that the function o

(
zε(

αz
αx
−1)+1

)
solves the appropriate differential

equation.

Collecting the different cases together gives proposition 3.

A.7 Appendix: different adjustment margin

In this appendix we fully solve the model described in section 2.2. We obtained that

when individuals of a certain rank choose both careers then the share that does so must

be constant. Therefore, we guess and verify that the equilibrium takes the following

form: individuals above a certain rank choose only one occupation and those below that

rank choose both.

Case 1. Consider first the case where there exists a zc such that individuals of rank

higher than Gz (zc) all choose to be generalists. Then (12) applies for z > zc and we

know that for z ≥ zc, µ = λαx−1

(αzαx
1−βz
βz

+1)
αx . Since m (zc) = xmin, we obtain:

zc = zmin

(
λ

αz
αx

1−βz
βz

+ 1

)αx
αz

, (31)

which is only possible if λ ≥ αz
αx

1−βz
βz

+ 1.

Case 2. Consider now the opposite case. Individuals ranked above Gz (zm) all choose

to be doctors, those ranked below all choose to be generalists. Since λ > 1, the supply

of health services by agents ranked higher than Gz (zm) is enough to cover their own

demand for health services. Therefore, if one denotes by r (z) the rank of the patient

of a doctor of quality z, we obtain that there exists a zp < zm, such that r (zp) = zm:

doctors with ability lower than zp only provide health services to doctors and those with

ability above z provide health services to both doctors and generalists. Since zm > zp, we

have that for z ≥ zm, (12) applies which directly leads to µ = λαx−1

(αzαx
1−βz
βz

+1)
αx for z ≥ zm.
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We then get to further write for z ≤ zm:

r (z) =

∫ zm

z

λgz (ζ) dζ +

∫ ∞
zm

λµ (ζ) gz (ζ) dζ = λ

((zmin

z

)αz
− (1− µ)

(
zmin

zm

)αz)
.

(32)

For z ≥ zp, m (z) = G
−1
x (r (z)), so that (32) implies

m (z) = xminλ
− 1
αx

((zmin

z

)αz
− (1− µ)

(
zmin

zm

)αz)− 1
αx

for z ∈ (zp, zm) .

(3) still applies and now gives the differential equation:

(
w′ (z) z +

βz
1− βz

w (z)

)
=

βz
1− βz

xminλ
αx−1
αx

((zmin

z

)αz
− (1− µ)

(
zmin

zm

)αz)− 1
αx

.

Using that w (zm) = xmin

(
zm
zmin

)αz
αx

, the solution to this differential equation is then given

by:

w (z) = z−
βz

1−βz xmin (zmin)−
αz
αx

(
z
αz
αx

+ βz
1−βz

m − βz
1− βz

λ
αx−1
αx

∫ zm

z

ζ−
1−2βz
1−βz

(
ζ−αz − (1− µ) z−αzm

)− 1
αx dζ

)
.

For this to be an equilibrium, we need to check that w (z) ≥ xmin

(
z

zmin

)αz
αx

, which is the

income that a doctor of rank Gz (z) would obtain as a generalist. We can rewrite:

w (z)− xmin

(
z

zmin

)αz
αx

= xmin (zmin)−
αz
αx z−

βz
1−βz T (z)

with

T (z) ≡ z
αz
αx

+ βz
1−βz

m − z
αz
αx

+ βz
1−βz − βz

1− βz
λ
αx−1
αx

∫ zm

z

ζ−
1−2βz
1−βz

(
ζ−αz − (1− µ) z−αzm

)− 1
αx dζ.

We get

T ′ (z) =

(
1−

(
z−αz − (1− µ) z−αzm

µz−αz

) 1
αx

)
βzλ

αx−1
αx

1− βz
z−

1−2βz
1−βz

(
z−αz − (1− µ) z−αzm

)− 1
αx .

where we used that
αz
αx

1− βz
βz

+ 1 = λ (µλ)−
1
αx . (33)
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Further for z < zm, we get that z−αz − (1− µ) z−αzm > µz−αz , so that T ′ (z) < 0.

Since T (zm) = 0, then we get that T (z) > 0 for z < zm, which ensures that w (z) >

xmin

(
z

zmin

)αz
αx

for zp ≤ z < zm.

Finally, we consider what happens for z < zp. Denote by d (z) the doctor’s ability of

the individual of rank r (z), then using (32) we get:

d (z) = λ−
1
αz

(
z−αz − (1− µ) z−αzm

)− 1
αz . (34)

To close the market, it must be that d (zmin) = zmin, which implies that

zm = zmin

(
1− µ
1− 1

λ

) 1
αz

. (35)

Therefore zm > zmin is only possible if µ < 1/λ, which corresponds to λ < αz
αx

1−βz
βz

+ 1

(the opposite from case 1). Therefore, as long as the equilibrium exists in this case for

µ < 1/λ, we will have found the overall equilibrium for all possible parameters. We can

henceforth assume that in case 2, µ < 1/λ.

Further, by definition again, we must have d (zp) = zm, so that:

zp =
zm(

1 + 1
λ
− µ

) 1
αz

= zmin

(
1− µ(

1− 1
λ

) (
1 + 1

λ
− µ

)) 1
αz

. (36)

It is direct to verify that for µ < 1/λ, zmin < zp < zm.

Now the patient of the doctor of quality z will have an income given by w (d (z)).

Therefore (3) gives that for z ≤ zp, w (z) must satisfy:

w′ (z) z =
βz

1− βz
(λw (d (z))− w (z)) .

Multiply this equation by z
βz

1−βz
−1 and integrate over (z, zp) to obtain that the solution

must satisfy:

w (z) =

(
w (zp) z

βz
1−βz
p −

∫ zp

z

βz
1− βz

ζ
2βz−1
1−βz λw (d (ζ)) dζ

)
z−

βz
1−βz for z ≤ zp.

Once again, we need to verify that w (z) ≥ xmin

(
z

zmin

)αz
αx

for z < zp. Taking the
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difference we can write:

w (z)− xmin

(
z

zmin

)αz
αx

=

((
w (zp)− xmin

(
zp
zmin

)αz
αx

)
z

βz
1−βz
p +

xmin

z
αz
αx
min

(
z
αz
αx

+ βz
1−βz

p − z
αz
αx

+ βz
1−βz

)
−
∫ zp

z

λβzζ
2βz−1
1−βz

1− βz
w (d (ζ)) dζ

)
z−

βz
1−βz .

We already know that w (zp) > xminz
−αz
αx

min z
αz
αx
p . Moreover for ζ ∈ (z, zp), d (ζ) < zm, since

w (z) is increasing we get

w (d (ζ)) ≤ w (zm) = xmin

(
zm
zmin

)αz
αx

.

Therefore, we get:

w (z)− xmin

(
z

zmin

)αz
αx

>
xminz

− βz
1−βz

z
αz
αx
min

T2 (z) .

with

T2 (z) =

(
z
αz
αx

+ βz
1−βz

p − z
αz
αx

+ βz
1−βz

)
− λz

αz
αx
m

(
z

βz
1−βz
p − z

βz
1−βz

)
.

Differentiating, we get:

T ′2 (z) =

(
λ

βz
1− βz

z
αz
αx
m −

(
αz
αx

+
βz

1− βz

)
z
αz
αx

)
z

βz
1−βz

−1.

Therefore T ′2 (z) has the sign of λ βz
1−βz z

αz
αx
m −

(
αz
αx

+ βz
1−βz

)
z
αz
αx , which is more likely to be

negative for a higher z and can change sign at most once on (zmin, zp). Using (36) and

(33) we get that

T ′2 (zp) =
βzλ

αx−1
αx µ−

1
αx

1− βz
z

βz
1−βz

−1z
αz
αx
p

(((
1 +

1

λ
− µ

)
λµ

) 1
αx

− 1

)
.

Note that
(
1 + 1

λ
− µ

)
λµ = 1− (1− µ) (1− λµ), since λµ < 1 and λ > 1 (which implies

µ < 1), then we get
(
1 + 1

λ
− µ

)
λµ < 1. Therefore T ′2 (zp) < 0, so that over (zmin, zp)

either T2 is everywhere decreasing or T2 is initially increasing and afterwards decreasing.

In the former case since T2 (zp) > 0, we directly get that T2 (z) > 0 for z ∈ (zmin, zp). In

the latter case, a necessary and sufficient condition to get T2 (z) > 0 over the interval
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(zmin, zp) is that T2 (zmin) > 0.

Using (35) and (36), we now compute

T2 (zmin) = z
αz
αx

+ βz
1−βz

min

λ(1− µ
1− 1

λ

) 1
αx

− 1−

(
λ−

(
1

1 + 1
λ
− µ

) 1
αx

)(
1− µ
1− 1

λ

) 1
αx

(
1− µ(

1− 1
λ

) (
1 + 1

λ
− µ

)) 1
αz

βz
1−βz

 .
Note that λ −

(
1

1+ 1
λ
−µ

) 1
αx

> 0 since 1
λ
> µ and that 1−µ

(1− 1
λ)(1+ 1

λ
−µ)

> 1 so that(
1−µ

(1− 1
λ)(1+ 1

λ
−µ)

) 1
αz

βz
1−βz

> 1, therefore:

T2 (zmin) > z
αz
αx

+ βz
1−βz

min

[
λ

(
1− µ
1− 1

λ

) 1
αx

− 1−

(
λ−

(
1

1 + 1
λ
− µ

) 1
αx

)(
1− µ
1− 1

λ

) 1
αx

]

≥ z
αz
αx

+ βz
1−βz

min

( 1− µ(
1− 1

λ

) (
1 + 1

λ
− µ

)) 1
αx

− 1


> 0,

since 1−µ
(1− 1

λ)(1+ 1
λ
−µ)

> 1. This guarantees that we always have T2 (z) > 0 over (zmin, zp),

so that we obtain w (z) > xmin

(
z

zmin

)αz
αx

for z ∈ (zmin, zm), which ensures that we do

have an equilibrium: no doctor of rank higher than Gz (zm) would like to switch and be

a generalist.

A.7.1 Appendix: Proof of Proposition 2

Since ω (z) is equalized between the two regions, then the threshold zc of the least

able potential doctor must also be the same in the two regions.23 Summing up the

market clearing equations (13) and (14), we obtain that as in the baseline model, zc =

(λµd)
1
αz zmin. Next combining (13) and (14), we get that

xAmin (1 + ϕ (z))
− 1

αAx = xBmin

(
z

zc

) αz
αBx
− αz
αAx

(1− ϕ (z))
− 1

αBx . (37)

23Here potential doctors who decide to work in the homogeneous good sector would go to region B
since αAx > αBx implies that xAmin < xBmin. This is without consequences: alternatively, we could have
assumed that the outside option of doctors is to produce x̂, which is identical between the two regions.
In that case potential doctors who work in the homogeneous sector would not move.
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Since αBx > αAx , we get that
(
z
zc

) αz
αBx
− αz
αAx tends towards 0. As a net share ϕ (z) ∈ (−1, 1),

if ϕ (z)→ −1, then the left-hand side would tend toward infinity and the right-hand side

toward 0, which is a contradiction. Therefore 1 + ϕ (z) must be bounded below, which

ensures that the left-hand side is bounded above 0. If ϕ (z) 6→ 1, then the right-hand

side would be asymptotically 0, this is also a contradiction. Therefore asymptotically,

we must have that ϕ (z) → 1: nearly all the best doctors move to the most unequal

region.

Plugging (13) in (3), we get that in region A:

w′ (z) z +
βz

1− βz
w (z) =

βzλ

1− βz
(1 + ϕ (z))

− 1

αAx

(zc
z

)− αz
αAx .

Therefore, asymptotically:

w (z)→ λβzα
A
x 2
− 1

αAx

αz (1− βz) + βzαAx

(
z

zc

) αz
αAx

(38)

Since ϕ (z)→ 1, after the location decision, doctors’ talent is asymptotically distributed

with Pareto coefficient αz in region A: for z high enough, there are 2µd (zmin/z)αz doctors

eventually located in region A. We then directly get that doctor’s income distribution

is asymptotically Pareto distributed with coefficient αAx .

From (37), we get that:

1− ϕ (z) =
(
xBmin/x

A
min

)αBx (1 + ϕ (z))α
B
x /α

A
x (z/zc)

αz(1−αBx /αAx )

→ 2α
B
x /α

A
x
(
xBmin/x

A
min

)αBx (z/zc)
αz(1−αBx /αAx ) . (39)

Then we can write that in region B, the probability that a doctor earns at least w̃ is

given by:

PB
doc (W > w̃) =

µdP (Z > w−1 (w̃)) (1− ϕ (w−1 (w̃)))

µdP (Z > zc)
,

where w above denotes the wage function. Indeed, there are originally µdP (Z > w−1 (w̃))

doctors present in region B with a talent sufficient to earn w̃. Out of these doctors,

1 − ϕ (w−1 (w̃)) stay in region B. Moreover, the total mass of active doctors in region

B is given by µdP (Z > zc), since overall there is no net movement of actual doctors.

56



Using (38) we get that,

w−1 (w̃)→ zc

(
w̃
αz (1− βz) + βzα

A
x

λβzαAx
2

1

αAx

)αAx
αz

.

Using this expression and (39) we get that:

PB
doc (W > w̃) =

(
zc

w−1 (w̃)

)αz (
1− ϕ

(
w−1 (w̃)

))
→
(
xBmin

xAmin

λβzα
A
x

αz (1− βz) + βzαAx

1

w̃

)αBx
.

This establishes Proposition 2.

B Empirical Appendix

B.1 Additional Regressions for other occupations

We perform an analysis like that of Tables 5 and 6 for nurses, College professors and

Real Estate agents (occupation code 254). Real Estate agents are censored at around

top 7 per cent and we use top 20 per cent uncensored observations.

And finally, we show that income inequality for chief executives and public adminis-

trators positively predict the income inequality for secretaries in Table B.4.

B.2 Robustness Checks for Physicians

We perform robustness checks for the the regression in Table 5. In particular, Table

B.5 shows the regression for different cut-offs. The parameter estimate is generally not

far from 1 and remains significant at the 10% level throughout the regressions. Table

B.6 shows that the choice of how many LMAs to include does not affect the parameter

estimate much.

C Construction of Data on Labor Market Areas

The publicly available data from IPUMS gives information on “country group” in 1980

and “Public Use Microdata Area” (PUMA) for 1990 and onward. We wish to assign

these to labor market areas. Dorn (2009) uses a probabilistic approach using the ag-

gregate correspondence between county groups/PUMAs and counties and counties and
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Table B.1: IV Regressions for Nurses (top 10 per cent)

(1) (2) (3) (4) (5)
OLS OLS 1st Stage 2SLS 2SLS

log(1/α(o)) log(1/α(o)) log(1/α(−o)) log(1/α(o)) log(1/α(o))

log(1/α(−o)) 0.46*** 0.49*** 0.86 1.04
[ 0.10, 0.59] [ 0.11, 0.64] [-0.61, 2.27] [-0.72, 2.61]

Instrument 0.82***
[ 0.63, 0.96]

Log of Population 0.09 -0.07*** 0.14
[-0.04, 0.21] [-0.08,-0.06] [-0.03, 0.30]

Log of Income 0.28** -0.01 0.28**
[ 0.04, 0.43] [-0.02, 0.02] [ 0.04, 0.44]

1990 -0.07** -0.26*** 0.03*** -0.12 -0.34**
[-0.10,-0.00] [-0.32,-0.06] [ 0.01, 0.05] [-0.33, 0.07] [-0.58,-0.06]

2000 0.11*** -0.21 0.19*** 0.01 -0.35
[ 0.07, 0.21] [-0.33, 0.09] [ 0.17, 0.22] [-0.35, 0.36] [-0.77, 0.11]

2014 0.16*** -0.24 0.19*** 0.06 -0.41
[ 0.13, 0.28] [-0.40, 0.12] [ 0.16, 0.23] [-0.37, 0.46] [-0.90, 0.14]

LMA FE Yes Yes Yes Yes Yes
R2(ex. LMA FE) 0.27 0.28 0.82 . .
Observations 1,176 1,176 1,176 1,176 1,176

Bootstrapped standard errors based on 300 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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Table B.2: IV Regressions for College Professors (top 10 per cent)

(1) (2) (3) (4) (5)
OLS OLS 1st Stage 2SLS 2SLS

log(1/α(o)) log(1/α(o)) log(1/α(−o)) log(1/α(o)) log(1/α(o))

log(1/α(−o)) 0.35 0.42 -0.82 -0.70
[-0.18, 0.63] [-0.12, 0.71] [-2.64, 1.07] [-2.59, 1.31]

Instrument 0.95***
[ 0.70, 1.15]

Log of Population 0.25*** -0.05*** 0.19**
[ 0.10, 0.41] [-0.07,-0.03] [ 0.01, 0.41]

Log of Income -0.12 0.03** -0.10
[-0.39, 0.21] [ 0.01, 0.06] [-0.37, 0.26]

1990 0.03 0.07 -0.02 0.17 -0.70**
[-0.02, 0.11] [-0.14, 0.26] [-0.06, 0.01] [-0.06, 0.39] [-1.27,-0.07]

2000 0.21*** 0.25 0.14*** 0.47** -0.50***
[ 0.13, 0.35] [-0.07, 0.58] [ 0.10, 0.17] [ 0.04, 0.88] [-0.81,-0.17]

2014 0.38*** 0.43** 0.11*** 0.67*** -0.20***
[ 0.31, 0.53] [ 0.03, 0.83] [ 0.05, 0.15] [ 0.20, 1.13] [-0.29,-0.10]

LMA FE Yes Yes Yes Yes Yes
R2(ex. LMA FE) 0.43 0.44 0.83 . .
Observations 703 703 704 703 703

Bootstrapped standard errors based on 300 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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Table B.3: IV Regressions for Secretaries (top 10 per cent)

(1) (2) (3) (4) (5)
OLS OLS 1st Stage 2SLS 2SLS

log(1/α(o)) log(1/α(o)) log(1/α(−o)) log(1/α(o)) log(1/α(o))

log(1/α(−o)) 0.03 0.06 0.39 0.41
[-0.11, 0.21] [-0.09, 0.24] [-0.69, 1.38] [-0.68, 1.30]

Instrument 0.69***
[ 0.57, 0.81]

Log of Population 0.13*** -0.06*** 0.16***
[ 0.05, 0.22] [-0.07,-0.04] [ 0.04, 0.27]

Log of Income 0.16*** 0.02*** 0.15**
[ 0.03, 0.31] [ 0.00, 0.04] [ 0.01, 0.31]

1990 -0.05*** -0.17*** 0.02* -0.09 0.28**
[-0.08,-0.02] [-0.27,-0.09] [-0.00, 0.04] [-0.21, 0.04] [ 0.01, 0.57]

2000 0.12*** -0.09 0.17*** 0.04 0.08
[ 0.06, 0.15] [-0.25, 0.01] [ 0.14, 0.19] [-0.20, 0.26] [-0.08, 0.22]

2014 0.07** -0.20** 0.16*** -0.02 0.12***
[ 0.01, 0.12] [-0.39,-0.06] [ 0.13, 0.19] [-0.27, 0.23] [ 0.07, 0.16]

LMA FE Yes Yes Yes Yes Yes
R2(ex. LMA FE) 0.13 0.14 0.80 . .
Observations 1,576 1,576 1,576 1,576 1,576

Bootstrapped standard errors based on 300 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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Table B.4: OLS regressions for secretaries on Chief executives and public administrators for
2000 and 2014

(1) (2) (3) (4)
Secretaries Secretaries Secretaries Secretaries

Chief executives and public administrators 0.178∗∗∗ 0.177∗∗∗ 0.136∗∗ 0.136∗∗

(4.24) (4.28) (2.02) (2.00)

2014 -0.0953∗∗∗ -0.0968∗∗∗ -0.0892
(-4.50) (-4.64) (-1.21)

Log of Inc. -0.0446
(-0.18)

Log of Pop. 0.0391
(0.19)

Observations 769 769 769 769
Adjusted R2 0.022 0.046 0.095 0.090

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Regressions limited to 2000 and 2014 due to insufficient information on CEOs in 1980

and 1990. Weighted by number of secretaries by LMA. For 8 observations or more. Column

(I) is univariate OLS, Column (II) includes
time dummy for 2014, Column (III) further includes labor market area fixed effects and
Column (IV) controls for average wage income as well as population.
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Table B.5: IV Regressions for Physicians for different cut-offs of Pareto Distribution

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

cut-off 35 40 45 55 65 75

log(1/α(−o)) 1.33*** 1.48** 1.41* 1.07* 1.17* 1.82*
[ 0.25, 2.42] [ 0.06, 2.23] [-0.35, 2.86] [-0.10, 2.00] [-0.12, 2.41] [-0.14, 3.67]

Log of Population 0.10 0.13 0.17* 0.17* 0.20** 0.31**
[-0.09, 0.22] [-0.11, 0.26] [-0.02, 0.34] [-0.02, 0.35] [ 0.02, 0.47] [ 0.02, 0.48]

Log of Income 0.06 -0.03 -0.25*** -0.31*** -0.32*** -0.25**
[-0.11, 0.17] [-0.23, 0.12] [-0.45,-0.05] [-0.56,-0.17] [-0.66,-0.16] [-0.71,-0.06]

1990 -0.07 -0.04 -0.20 -0.38*** -0.41*** 0.20**
[-0.19, 0.11] [-0.14, 0.15] [-0.70, 0.03] [-0.92,-0.21] [-0.97,-0.23] [ 0.08, 0.60]

2000 -0.20 -0.17 -0.08 -0.17** -0.16** 0.00
[-0.40, 0.12] [-0.33, 0.19] [-0.36, 0.06] [-0.45,-0.08] [-0.45,-0.04] [-0.17, 0.66]

2014 -0.15 -0.09 -0.13*** -0.21*** -0.25*** 0.18*
[-0.37, 0.22] [-0.27, 0.31] [-0.19,-0.10] [-0.28,-0.18] [-0.34,-0.21] [-0.03, 0.94]

Observations 1,012 1,012 1,012 1,012 1,011 1,011

Bootstrapped standard errors based on 100 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01
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Table B.6: IV Regressions for Physicians for different number of LMAs

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

LMAs 100 150 200 253 300 All

log(1/α(−o)) 1.70*** 1.35** 0.83* 1.33*** 1.21** 1.11**
[ 0.76, 2.45] [ 0.27, 2.01] [-0.16, 1.57] [ 0.25, 2.42] [ 0.09, 2.10] [ 0.05, 1.87]

Log of Population 0.17 0.07 0.02 0.10 0.12 0.09
[-0.03, 0.33] [-0.12, 0.20] [-0.14, 0.17] [-0.09, 0.22] [-0.05, 0.21] [-0.05, 0.21]

Log of Income -0.04 0.03 0.09 0.06 0.07 0.08
[-0.22, 0.15] [-0.16, 0.17] [-0.08, 0.19] [-0.11, 0.17] [-0.09, 0.22] [-0.11, 0.24]

1990 0.16 0.13 0.05 -0.07 0.14 0.11
[-0.22, 0.39] [-0.25, 0.26] [-0.30, 0.24] [-0.19, 0.11] [-0.26, 0.32] [-0.24, 0.26]

2000 0.09 0.07 0.02 -0.20 0.07 0.05
[-0.11, 0.22] [-0.13, 0.14] [-0.16, 0.11] [-0.40, 0.12] [-0.14, 0.18] [-0.12, 0.15]

2014 -0.02 -0.04** -0.05*** -0.15 -0.06*** -0.08***
[-0.10, 0.03] [-0.10,-0.01] [-0.11,-0.02] [-0.37, 0.22] [-0.13,-0.03] [-0.13,-0.04]

Observations 400 600 800 1,012 1,200 1,573

Bootstrapped standard errors based on 100 draws, stratefied at the occupation/year/labor market level. 95 pct

confidence interval in brackets. Income is average wage income for those with positive income. log(1/α(o))

refers to income inequality for the occupation of interest. log(1/α(−o)) refers to all occupations,

except the occupation of interest. 1/α calculated using MLE * p <= 0.10, ** p <= 0.05, *** p <= 0.01

63



Figure C.1: Labor Market Areas as defined for 1990

commuting zones and creates a “crosswalk” assigning weights for each country group in

1980 to 1990 commuting zones and for each PUMA to 1990 commuting zones. If a given

county group or PUMA is assigned to multiple commuting zones we“split”all individuals

in the county group or PUMA and give each weights from the crosswalk. The IPUMS

data from 2012 onward uses the PUMA2010 (updated from the 2010 federal census)

and we construct a new crosswalk along the same lines as Dorn (2009). Counties are

very stable across town and we manually correct for county changes between 2000 and

2010. Finally, since our unit of analysis is labor market areas we use Missouri Census

Data Center (http://mcdc.missouri.edu/websas/geocorr2k.html) to aggregate commut-

ing zones into labor market areas. Each commuting zone is uniquely assigned to a labor

market area. If a single individual had been split into two commuting zones within the

same labor market area using Dorn’s algorithm we combine the two into one observation

aggregating their weights. Figure C.1 shows the labor market areas for 1990.
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Table D.1: Top occupations and income inequality (1/α)

1/α
Occupation 1980 (pred. 95/90 ) 1990 2000 2014 (pred. 95/90)

Chief executives and public administrators 0.24 ( 1.18) 0.34 0.65 0.57 ( 1.48)
Financial managers 0.32 ( 1.25) 0.43 0.48 0.52 ( 1.44)
Managers and specialists in marketing,
advertising, and public relations

0.30 ( 1.23) 0.33 0.36 0.37 ( 1.29)

Managers in education and related fields 0.19 ( 1.14) 0.24 0.23 0.29 ( 1.22)
Managers and administrators, n.e.c. 0.43 ( 1.34) 0.45 0.36 0.38 ( 1.30)
Accountants and auditors 0.27 ( 1.21) 0.32 0.38 0.44 ( 1.35)
Computer systems analysts and computer
scientists

0.16 ( 1.12) 0.21 0.25 0.25 ( 1.19)

Physicians 0.47 ( 1.39) 0.78 0.55 0.62 ( 1.54)
Registered nurses 0.17 ( 1.13) 0.17 0.20 0.23 ( 1.17)
Subject instructors (HS/college) 0.20 ( 1.14) 0.24 0.28 0.33 ( 1.26)
Lawyers 0.42 ( 1.34) 0.53 0.58 0.58 ( 1.49)
Computer software developers 0.18 ( 1.13) 0.19 0.23 0.24 ( 1.18)
Supervisors and proprietors of sales jobs 0.40 ( 1.32) 0.45 0.44 0.44 ( 1.36)
Insurance sales occupations 0.42 ( 1.34) 0.50 0.52 0.58 ( 1.49)
Real estate sales occupations 0.45 ( 1.37) 0.59 0.67 0.69 ( 1.61)
Salespersons, n.e.c. 0.35 ( 1.27) 0.40 0.39 0.42 ( 1.34)
Supervisors of construction work 0.30 ( 1.23) 0.33 0.29 0.30 ( 1.23)
Production supervisors or foremen 0.20 ( 1.15) 0.20 0.26 0.29 ( 1.23)
Truck, delivery, and tractor drivers 0.20 ( 1.15) 0.22 0.24 0.26 ( 1.20)
Military 0.28 ( 1.21) 0.25 0.28 0.25 ( 1.19)

Notes: Estimates of 1/α for top 20 occupations using top 10 per
cent of population

D Pareto Fit and Tables for Top Occupation s

Table D.1 gives the change in α for the top occupations. The top occupations for 1980

and 2014 are given in Table D.2.
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Table D.2: Top occupations in 1%, 5%, 10%, for year 1980 and 2014

1980 2014
rank top 10 pct top 5 pct top 1 pct top 10 pct top 5 pct top 1 pct

1
Managers and
administrators,

n.e.c.

Managers and
administrators,

n.e.c.

Managers and
administrators,

n.e.c.

Managers and
administrators,

n.e.c.

Managers and
administrators,

n.e.c.
Physicians

2 Salespersons, n.e.c. Salespersons, n.e.c. Physicians
Chief executives

and public
administrators

Physicians
Managers and
administrators,

n.e.c.

3
Production

supervisors or
foremen

Production
supervisors or

foremen

Real estate sales
occupations

Computer software
developers

Chief executives
and public

administrators

Chief executives
and public

administrators

4
Truck, delivery,

and tractor drivers

Managers and
specialists in
marketing,

advertising, and
public relations

Salespersons, n.e.c. Physicians Lawyers Lawyers

5

Managers and
specialists in
marketing,

advertising, and
public relations

Real estate sales
occupations

Managers and
specialists in
marketing,

advertising, and
public relations

Lawyers Salespersons, n.e.c.
Real estate sales

occupations

6
Real estate sales

occupations
Physicians Lawyers Salespersons, n.e.c.

Supervisors and
proprietors of sales

jobs

Supervisors and
proprietors of sales

jobs

7
Supervisors of

construction work

Supervisors and
proprietors of sales

jobs

Supervisors and
proprietors of sales

jobs

Supervisors and
proprietors of sales

jobs

Computer software
developers

Salespersons, n.e.c.

8
Supervisors and

proprietors of sales
jobs

Truck, delivery,
and tractor drivers

Production
supervisors or

foremen

Computer systems
analysts and

computer scientists

Managers and
specialists in
marketing,

advertising, and
public relations

Other financial
specialists

9 Physicians Lawyers
Airplane pilots and

navigators
Registered nurses Financial managers Financial managers

10
Primary school

teachers
Supervisors of

construction work
Dentists

Accountants and
auditors

Real estate sales
occupations

Managers and
specialists in
marketing,

advertising, and
public relations

Notes:
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The paper uses the assumption of Pareto for physicians on the LMA-year-occupation

level, for LMA-year for the general population and for occupation-year level for the top

20 occupations. Figure 3 in the main text shows the fit with Pareto distribution for the

biggest LMA for the whole distribution and for physicians specifically. Figures D.1 and

D.2 show analogous figures for the 20 biggest labor market areas for physicians and for

the all other occupations than physicians both for the year 2000. Whereas the general

population fits the Pareto assumption remarkably well, there is more noise around the

line for the physicians, though no systematic deviation.

Figure D.1: Fit to the Pareto Distribution for general income distribution for Physicians for
20 biggest labor market areas for 2000 (using top 65 per cent of uncensored
observations)
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Figure D.2: Fit to the Pareto Distribution for general income distribution excluding Physi-
cians for 20 biggest labor market areas for 2000 (using top 10 per cent of un-
censored observations)
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